热电的热电材料

 2025-01-12 04:54:01  阅读 316  评论 0

摘要:热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。如随着空间探索兴趣的增加、医用物理学的进展以及在地球难于日益增加的资源考察与探索活动,需要开发一类能够自身供能且无

热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。如随着空间探索兴趣的增加、医用物理学的进展以及在地球难于日益增加的资源考察与探索活动,需要开发一类能够自身供能且无需照看的电源系统,热电发电对这些应用尤其合适。随着全球工业化进程的加快, 世界能源短缺和枯竭已经成为每个国家不容忽视的问题, 严重制约着社会长期稳定发展。研究和开发新能源已经成为全球能源发展的趋势。生活中有许多耗费能源所生成、却又被废弃的热能,例如:汽车尾气、工厂锅炉排放的气体等。如果能将这些热能善加利用,即可成为再次使用的能源;电能是最广泛使用的能源形式,但是目前发电的主要形式还是化石能源,这些能源的使用在给我们带来便利的同时,也带来了全球关注的环境问题;现代制冷技术给人们生活带来了很多便利,但是氟里昂制冷剂所带来的环境问题却不容忽视。热电材料以其独特的性能成为一种很有发展前途的功能材料, 它的应用包括温差发电和温差制冷。什么是热电材料呢?热电材料是一种利用固体内部载流子运动实现热能和电能直接相互转换的功能材料。人们对热电材料的认识具有悠久的历史。1823年,德国人塞贝克(Seebeck)发现了材料两端的温差可以产生电压,也就是通常所说的温差电现象。1834年,法国钟表匠珀耳帖(Peltier)在法国《物理学和化学年鉴》上发表了他在两种不同导体的边界附近(当有电流流过时)所观察到的温差反常的论文。这两个现象表明了热可以致电,而同时电反过来也能转变成热或者用来制冷,这两个现象分别被命名为塞贝克效应和珀耳帖效应。它们为热电能量转换器和热电制冷的应用提供了理论依据。在环境污染和能源危机日益严重的今天,进行新型热电材料的研究具有很强的现实意义。

热电材料ZT值是热电优值。

材料的热电效率可定义热电优值 (Thermoelectric figure of merit) ZT来评估:

热电的热电材料

其中,S为塞贝克系数(thermoelectric power or Seebeck coefficient),T为绝对温度,σ为电导率,κ为导热系数。为了有一较高热电优值ZT,材料必须有高的塞贝克系数(S),高的电导率与低的导热系数。

扩展资料

因热电转换效率主要依靠优值系数Z,而热电材料的Z主要跟热电材料的热物性参数(塞贝克系数、电导率、热导率)有着密切联系,无量纲的优值系数ZT则通常被用来作为热电材料性能的评价指标。随着技术的进展,提高热电材料的优值系数已成为近期亟待解决的问题之一。

20世纪后半叶,室温工况下热电材料的优值系数从0.75提高到1。根据热电材料的特性可知,要想得到高优值系数的材料,必须提高材料的Seebeck系数和电导率,降低材料的热导率。

百度百科-热电材料

百度百科-热电转换系统

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【热电的热电材料】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/zhishi/943730.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.2152秒, 内存占用1.98 MB, 访问数据库23次

陕ICP备14005772号-15