偏微分方程求解
1、核心思想是利用迭加原理求得微分方程足够数目的特解(基本解组),再作这些特解的线性组合,使满足给定的初始条件。
2、假定可分离变量的非平凡解的特解u(x,t)=X(x)T(t)并要求它满足齐次边界条件u(x,0)=0,u(x,π)=0。
3、分离变量后,得到T"(t)+λa^2T(t)=0? X"(t)+λX(t)=0。
4、求解X(x)的通解。
5、确定待定系数λ。
6、得到Uk(x,t)=Xk(x)*Tk(t)的特解。
7、根据初始条件,利用傅里叶级数确定Ak和Bk(即题目中的A1,A2)。
8、将Ak和Bk代入u(x,t)中,就得到偏微分方程以级数形式表示的解。
偏微分方程是厦门大学建设的慕课、国家精品在线开放课程,该课程于2017年3月1日在中国大学MOOC首次开设,授课教师为谭忠。据2021年7月中国大学MOOC官网显示,该课程已开课9次。
该课程共8章,包括引言:从音乐审美到揭秘量子纠缠;典型偏微分方程模型的建立;偏微分方程的基本概念、形成的数学问题与分类;高维波动方程的Cauchy问题;能量方法、极值原理与格林函数法等章目。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【偏微分方程求解】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态