多者合作是指多个主体通过一定合作方式完成工作的问题。题干具备描述不同合作方式的典型特征,所以我们可以借助梳理不同合作方式,并结合工作量一定来建立等量关系来解决此类问题。
常用的方法是特值法。特值法是指将题干中参与计算的过程量用具体数值来表示,从而达到简化计算目的的一种方法。
主要分为以下三种设特值的方式:
一个工程项目,甲公司单独做需要8天能完成,乙公司单独做需要12天,甲、乙、丙三个公司4天能完成,则由甲、丙公司合作完成此项目共需多少天?
A.5 B.6 C.7 D.8
思考:在计算过程中发现工作总量x在最后的运算过程中被约去了,并不影响实际计算结果,那么我们是否可以把工作总量设为具体数值方便计算呢?
甲工程队与乙工程队的效率之比为4:5。一项工程由甲工程队单独做6天,再由乙工程队单独做8天,最后由甲乙两个工程队合作4天刚好完成。如果这项工程由甲工程队或乙工程队单独完成,则甲工程队所需的天数比乙工程队所需的天数多几天?
A.3 B.4 C.5 D.6
常规解析:结合题干中给出甲乙效率比,结合份数思想,便可设两者工作效率分别为4x、5x,则这项工程的工作总量为4x×6+5x×8+(4x+5x)×4=100x。甲工程队单独完成需要100x÷4x=25天,乙工程队单独完成需要100x÷5x=20天,所求为25-20=5天,故本题选C。
思考:同样的,这道题目中x在运算中也被约掉,是不是也可以将甲乙效率直接特具体数值简化运算呢?
解析:设甲与乙的工作效率分别为4、5,则这项工程的工作总量为4×6+5×8+(4+5)×4=100。甲工程队单独完成需要100÷4=25天,乙工程队单独完成需要100÷5=20天,所求为25-20=5天,选C。
修一条公路,假设每人每天的工作效率相同,计划180名工人12天完成。工作4天后,因特殊情况,要求提前2天完成任务。则需要增加多少名工人?
A.50 B.65 C.70 D.60
常规解析:题干中每人每天的工作效率相同,则可设每名工人每天的工作效率为x,则全部的工作总量为180×12x,工作4天完成的工作量180×4x。设要想提前2天完成任务,则需要增加工人a名,则有180×4x+(180+a)×(12-4-2)x=180×12x。解得a=60。故本题选D。
思考:此题x被约掉,其数值仍不影响最终结果,仍然可以利用特值法求解!
解析:设每名工人每天的工作效率为1,则全部的工作总量为180×12,工作4天完成的工作量180×4。设要想提前2天完成任务,则需要增加工人x名,则有180×4+(180+x)×(12-4-2)=180×12。解得x=60,选D。
相信大家通过这次对多者合作的讲解,对这类问题有了更清晰的了解。重点学会以上三种特值法在多者合作问题中的应用,多多练习,熟能生巧,才能真正做到简单易上手!
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2023国家公务员考试行测数量关系简单易上手之多者合作】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态