行测数量关系工程问题中的特值法

 2024-12-25 16:09:01  阅读 722  评论 0

摘要:多者合作研究的是多个主体通过一定方式合作完成工作的问题,合作效率等于各个主体的效率加和。解决多者合作问题,可适当结合题干信息将未知量设为特值,来简化运算。一、已知多个主体完工时间,可设工作总量为1或完工时间的最小公倍数为特殊值例1某水池装有甲、乙、丙三根注水

多者合作研究的是多个主体通过一定方式合作完成工作的问题,合作效率等于各个主体的效率加和。解决多者合作问题,可适当结合题干信息将未知量设为特值,来简化运算。

一、已知多个主体完工时间,可设工作总量为1或完工时间的最小公倍数为特殊值

例1

某水池装有甲、乙、丙三根注水管,单独开甲管10分钟可将水注满,单独开乙管15分钟可将水注满,单独开丙管6分钟可将水注满,那么三管齐开需要多少分钟可以将水注满?

行测数量关系工程问题中的特值法

A.5 B.4 C.3 D.2

解析C。所求为三管齐开的时间,根据工程问题基本公式,需要用工作总量除以三个管的效率加和。题干给出了甲乙丙各自将水注满的时间,因此可设工作总量为特值。

方法一:设工作总量为1,甲的效率即为所求时间为故选C项。

方法二中三人的效率可直接表示为整数,明显计算更加简单,因此可以考虑直接设工作总量为时间的最小公倍数,以简化运算过程。

二、已知多个主体效率的比例关系时,一般根据效率关系将效率最简比设为特值

例2

甲、乙、丙三队合作修马路,已知甲队每天修的路程是丙队的3倍,乙队每天修的路程是丙队的2倍,三队合作6天完成总路程的后,甲休息6天后接着干,乙休息9天后接着干,丙不休息一直干,最终完工。则开始到完工需要多少天?

A.24 B.28 C.32 D.36

解析A。根据题意可知甲的效率是丙的3倍,乙的效率是丙的2倍,可知甲、乙、丙三者效率的比例关系为3:2:1,设丙的效率为1,则乙的效率为2,甲的效率为3;三队6天完成总路程的,则剩余部分按原效率需12天完成,剩余工作量为(3+2+1)×12,设剩余工作还需时间为t,根据甲乙丙三人的工作量加和等于剩余工作量,可列方程3×(t-6)+2×(t-9)+1×t=(3+2+1)×12,解得t=18,共用时间6+18=24天。故选A项。

通过上述两个例子可以发现,使用特值法解决多者合作问题可以简化运算,一般可再结合工作总量列方程求解。百尺竿头须进步,希望同学们不要疏于练习,博观而约取,厚积而薄发!

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【行测数量关系工程问题中的特值法】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/716429.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0445秒, 内存占用1.97 MB, 访问数据库24次

陕ICP备14005772号-15