德摩根公式是指德摩根定律,如下:
非(P 且 Q) = (非 P) 或 (非 Q)
非(P 或 Q) = (非 P) 且 (非 Q)
德·摩根定律在数理逻辑的定理推演中,在计算机的逻辑设计中以及数学的集合运算中都起着重要的作用。他的发现影响了乔治·布尔从事的逻辑问题代数解法的研究。这巩固了德摩根作为该规律的发现者的地位,尽管亚里士多德也曾注意到类似现象,且这也为古希腊与中世纪的逻辑学家熟知。
经典命题逻辑
的外延中,此二元性依然有效(即对于任意的逻辑运算符,我们都能找他它的对偶),由于存在于调节否定关系的恒等式中,人们总会引入作为一个算符的德·摩根对偶的另一个算符。这导致了基于传统逻辑的逻辑学的一个重要性质,即否定范式的存在性:任何公式等价于另外一个公式,其中否定仅出现在作用于公式中非逻辑的原子式。
这两条定律是:
1.NOT (A AND B)=(NOT A) OR (NOT B)
2.NOT (A OR B)= (NOT A) AND (NOT B)
从摩尔根定律看来,语句“天不下雨,我就不会淋湿”与“天正在下雨,且我正在被淋湿”是一个意思。同样,从第二个定律看来,语句“警察总是说谎或者教师总是知道真相这个事实不是真的”变成了“警察不总是说谎,教师不总是知道真相”。
在计算机应用中,德@摩尔根定律用下列形式典型地更为有用:
1.A AND B=((NOT A) OR (NOT B))
2.A OR B=((NOT A) AND (NOT B))
在命题逻辑和逻辑代数中,德·摩根定律(或称德·摩根定理)是关于命题逻辑规律的一对法则。
奥古斯塔斯·德·摩根首先发现了在命题逻辑中存在着下面这些关系:
非(P 且 Q) = (非 P) 或 (非 Q)
非(P 或 Q) = (非 P) 且 (非 Q)
德·摩根定律在数理逻辑的定理推演中,在计算机的逻辑设计中以及数学的集合运算中都起着重要的作用。 他的发现影响了乔治·布尔从事的逻辑问题代数解法的研究。这巩固了德摩根作为该规律的发现者的地位,尽管亚里士多德也曾注意到类似现象,且这也为古希腊与中世纪的逻辑学家熟知。
通用叫法为“德摩根定律”
发展历程与表达形式
奥古斯都·德·摩根首先发现了在命题逻辑中存在着下面这些关系:
非(P 且 Q)=(非 P)或(非 Q)
非(P 或 Q)=(非 P)且(非 Q)
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【德摩根定律三个公式是什么?】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态