2023国家公务员考试行测数量关系好办法之一元二次函数求极值

 2024-12-24 23:00:01  阅读 410  评论 0

摘要:题型介绍一元二次函数求极值问题,实际上就是根据题干所给的信息条件,可以将所求问题表示成关于某个未知量的一元二次函数,然后根据函数解析式的特点确定在何时取极值的过程。解题方法1.利用图像特点:一元二次函数的一般式为由图像可知a>0时,开口向上,在对称轴处y取最小值
题型介绍

一元二次函数求极值问题,实际上就是根据题干所给的信息条件,可以将所求问题表示成关于某个未知量的一元二次函数,然后根据函数解析式的特点确定在何时取极值的过程。

解题方法

1.利用图像特点:

一元二次函数的一般式为由图像可知a>0时,开口向上,在对称轴处y取最小值;a<0时,开口向下,在对称轴处y取最大值。如下图:

2023国家公务员考试行测数量关系好办法之一元二次函数求极值

此外,若函数是y=(ax+m)(bx+n),的形式,这可以令y=0,求此时得x的两个取值x1和x2,则函数y的对称轴为在对称轴处,函数y取最大值或最小值。

2.若函数可以写成y=k(x-p)(q-x),的形式,也可以考虑利用均值不等式相关结论来求最值。因为(x-p)与(q-x)的和为定值,根据和一定,乘积有最大值的结论,当且仅当(x-p)=(q-x)时,(x-p)×(q-x)有最大值,再结合k的符号,即可确定此时y的最值。

例题应用
例1

某商品的进货单价为80元,销售单价为100元,每天可售出120件。已知销售单价每降低1元,每天可多售出20件。若要实现该商品的销售利润最大化,则销售单价应降低的金额是:

A.5元 B.6元 C.7元 D.8元

答案C。解析:由利润公式可知,总利润=(销售单价-进货单价)×销售量,但销售单价和销售量均和降价的多少有关,不妨设销售单价应降低x元,则每天可多售出20x件,销售的总利润为y,此时y=(100-x-80)×(120+20x)。由此发现,此题为一元二次函数求极值问题。

方法一:由上式,括号打开化简后可得:总利润y=-20x2+280x+2400。此时,a=-20<0,故y的图像为开口向下,且在对称轴处有最大值,y最大,即销售单价降低7元时,总利润最大。

方法二:由上式,化简后可得:由上总利润y=(20-x)×(120+20x),令y=0,可得x=20或者x=-6,则函数y的对称轴为结合开口方向,此时y取最大值,即销售单价降低7元时,总利润最大。

方法三:由上式,化简后可得:由上总利润y=20(20-x)×(6+x),此时(20-x)+(x+6)=14,二者和为定值,由均值不等式结论,故当且仅当(20-x)=(x+6)时,(20-x)×(x+6)有最大值,即y有最大值,此时x=7,即销售单价降低7元时,总利润最大。

综上,答案选择C项。

例2

北京冬奥会期间,冬奥会吉祥物冰墩墩纪念品十分畅销。销售期间某商家发现,进价为每个40元的冰墩墩,当售价定为44元时,每天可售出300个,售价每上涨1元,每天销量减少10个。现商家决定提价销售,若要使销售利润达到最大,则售价应为:

A.51元 B.52元 C.54元 D.57元

答案D。解析:由利润公式可知,销售利润=(售价-进价)×销量,而售价和销量均和涨价多少有关,故可设涨价x元,销量则会减少10x个,设销售利润为y,则y=(44+x-40)×(300-10x)。由此发现,此题为一元二次函数求极值问题。

方法一:由上式,括号打开化简后可得:销售利润y=-10x2+260x+1200。此时,a=-10<0,故y的图像为开口向下,在对称轴处有最大值,y最大,即售价上涨13元至57元时,销售利润最大。

方法二:由上式,化简后可得:y=(4+x)×(300-10x)。令y=0,可得x=-4或者x=30,则函数y的对称轴为结合开口方向,此时y取最大值,即售价上涨13元至57元时,销售利润最大。

方法三:由上式,化简后可得:由上y=10(x+4)×(30-x)。此时(x+4)+(30-x)=34,二者和为定值,由均值不等式结论,故当且仅当(x+4)=(30-x)时,(x+4)×(30-x)有最大值,即y有最大值,此时x=13,即售价上涨13元至57元时,销售利润最大。

综上,答案选择D项。

通过以上两道例题我们可以看出,一元二次函数求极值的关键在于:

1.快速得到所求与未知量之间的函数解析式;2.根据函数解析式的形式或者思维习惯选择适当的方法确定函数在何处取极值。希望大家通过学习该方法,能够在平时练习时,有效解决此类问题。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2023国家公务员考试行测数量关系好办法之一元二次函数求极值】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/706145.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0455秒, 内存占用1.98 MB, 访问数据库24次

陕ICP备14005772号-15