1、化成常用数列,如等差数列和等比数列、平方数列、立方数列等。
2、错位相减法,对形如{a_n*b_n}的数列常用此法,其中a_n是等差数列,b_n是等比数列。常见方法。
3、公式法。如对差分方程a_n+2=p*a_n+1+q*a_n,(p、q为常数)可用特征方程x^2=px+q解。若特征方程有两相异根x1和x2,通解为an=αx1^n+βx2^n;若两根相同x1=x2,通解为(α+βn)x1^n,常数α和β由初始情况确定。
4、裂项法。裂项之后中间项能相互抵消而化简。该法也很常见。
5、数学归纳法。先计算出前面几项,然后对同项公式进行猜想,最后用数学归纳法严格证明之。这个方法使用很多,要重点掌握。
^3+2^3+3^3+……+n^3=[n(n+1)/2]^2
证明:
1^3=1^2
1^3+2^3=(1+2)^2
1^3+2^3+3^3=(1+2+3)^2
综上所述,观察得知:
1^3+2^3+3^3+……+n^3=(1+2+3+……+n)^2=n^2(n+1)^2/4
当n=1时,结论显然成立
若n=k时,结论假设也成立
1^3+2^3+3^3+……+k^3=k^2(k+1)^2/4
则n=k+1时有
1^3+2^3+3^3+……+k^3+(k+1)^3
=k^2(k+1)^2/4+(k+1)^3
=(k+1)^2(k^2+4k+4)/4
=(k+1)^2(k+2)^2/4
所以
1^3+2^3+3^3+……+n^3=n^2(n+1)^2/4
1、加法
a、整数和小数:相同数位对齐,从低位加起,满十进一。
b、 同分母分数:分母不变分子相加。异分母分数:先通分,再相加。
2、减法
a、整数和小数:相同数位对齐,从低位减起,哪一位不够减退一当十再减。
b、 同分母分数:分母不变,分子相减。分母分数:先通分,再相减。
3、乘法
a、整数和小数:用乘数每一位上的数去乘被乘数用哪一-位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同。
b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分结果要化简。
4、除法
a、整数和小数:除数有几位先看被除数的前几位, (不够就多看一位) ,除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐。
b、甲数除以乙数( 0除外)等于甲数除以乙数的倒数。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【解数列题的常用方法】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态