行测数量关系:如何求解多者合作类工程问题

 2024-12-19 12:54:01  阅读 990  评论 0

摘要:工程问题常用公式工作总量=工作效率工作时间(字母表达:W=pt)解题思路多者合作问题,一般根据不同完工方式下工作量一定,建立等量关系列式求解,在列式的过程中,可适当结合题干信息将未知量设为特殊值来简化运算。以下是三种设特值的常见方法:1.已知多个主体完工时间,可设
工程问题常用公式

工作总量=工作效率×工作时间(字母表达:W=p×t)

解题思路

多者合作问题,一般根据不同完工方式下工作量一定,建立等量关系列式求解,在列式的过程中,可适当结合题干信息将未知量设为特殊值来简化运算。以下是三种设特值的常见方法:

行测数量关系:如何求解多者合作类工程问题

1.已知多个主体完工时间,可设工作总量为1或完工时间们的公倍数

例1

一项工程,甲、乙合作12天完成,乙、丙合作9天完成,丙、丁合作12天完成,如果甲、丁合作,则完成这项工程需要的天数是:

A.16 B.18 C.24 D.26

解析答案选B。此题给出12天、9天、12天三个时间都是完成工作总量的时间,此时我们设工作总量为12和9的公倍数为36,则可求出效率:甲+乙=3,乙+丙=4,丙+丁=3。因此甲+丁=(甲+乙)+(丙+丁)-(乙+丙)=3+3-4=2。所以甲、丁合作完成这个工程需要36÷2=18天,选择B选项。

2.已知多个主体的效率比,可根据效率比设效率

例2

甲、乙两队完成一项工程的效率比为2∶5。该项工程,若由甲队先单独做3天,再由乙队单独做4天,最后由甲、乙两队合作6天刚好完成。问若由甲队单独完成,需要多少天?

A.32 B.33 C.34 D.35

解析答案选C。由题意,设甲的效率为2,乙的效率为5。所以工作总量=2×3+5×4+(2+5)×6=68,则甲队单独完成的时间为68÷2=34天,选择C选项。

3.已知多个主体的效率相同,可设每个主体单位时间的效率为1

例3

某农场有36台收割机,要收割完所有的麦子需要14天时间,现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升5%。问收割完所有的麦子还需要几天?

A.3 B.4 C.5 D.6

解析答案选D。此题中工作收割机众多,且没有区分收割机的差别,所以我们认为每台收割机的效率一样,不妨设每台收割机每天工作量为1。由题意,工作总量为36×14=504,剩余工作量=504-36×7=252,选择D选项。

打铁还需自身硬,大家熟悉了多者合作类工程问题的求解思路,而数量关系中其他题型的解题思路还需要大家多做题、多总结。欢迎大家在学习中与一起交流,加油!

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【行测数量关系:如何求解多者合作类工程问题】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/628082.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.1366秒, 内存占用1.97 MB, 访问数据库24次

陕ICP备14005772号-15