行测数量关系:特值法在工程问题中的妙用

 2024-12-13 02:42:01  阅读 807  评论 0

摘要:一、将甲、乙完成天数的最小公倍数设为工作总量例1项目部接到一项工程,若该工程由甲组单独完成需要30天,若由乙组单独完成则需要20天。现在由于时间关系,两个项目组共同合作,需要多少天才能完成这项工程?A.8 B.12 C.14 D.18答案B。解析:设工作总量为60,可得甲工作效率为

一、将甲、乙完成天数的最小公倍数设为工作总量

例1

项目部接到一项工程,若该工程由甲组单独完成需要30天,若由乙组单独完成则需要20天。现在由于时间关系,两个项目组共同合作,需要多少天才能完成这项工程?

A.8 B.12 C.14 D.18

答案B。解析:设工作总量为60,可得甲工作效率为2,乙的工作效率为3,因此他们的合作效率为5,合作完成所需时间为60÷5=12天,故选择B。

行测数量关系:特值法在工程问题中的妙用

二、将效率比直接设为效率

例2

某市有甲、乙、丙三个工程队,工作效率比为3:4:5。一项工程先由甲工作4天,再由甲、乙合作5天,最后由乙单独工作7天即可完成。问这项工程由丙单独完成需要多少天?

A.12 B.15 C.18 D.21

答案B。解析:根据效率比设甲的效率为3,乙的效率为4,丙的效率为5,则这项工程的工作总量为4×3+5×(3+4)+7×4=75,因此丙单独完成需要75÷5=15天,故选B。

三、多个对象合作,且每个对象的工作效率一样时,设每个对象的工作效率为1

例3

公司安排100名工人去修一条公路,假设每个工人每月的工作效率一样,计划10个月完成该项工程,工作2个月后,由于特殊情况,需提前3个月完工,为保证按时完工,则需增加多少名工人?

A.40 B.50 C.60 D.70

答案C。解析:设每个工人每月的工作效率为1,为保证提前3个月完工,需增加x名工人,根据工程总量保持不变可得1×100×10=1×100×2+1×(100+x)×(10-2-3),解得x=60,因此选择C。

以上三种情况就是工程问题中常用的特值法,不同的情况我们可以选择不同的对象设特值,从而简化计算过程,更高效地解题。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【行测数量关系:特值法在工程问题中的妙用】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/550606.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0549秒, 内存占用1.97 MB, 访问数据库24次

陕ICP备14005772号-15