北师版八上《勾股定理》说课稿

 2024-12-09 13:15:01  阅读 250  评论 0

摘要: 作为一名教学工作者,常常要根据教学需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。写说课稿需要注意哪些格式呢?以下是我精心整理的北师版八上《勾股定理》说课稿(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。 北师版八上《勾股定理

 作为一名教学工作者,常常要根据教学需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。写说课稿需要注意哪些格式呢?以下是我精心整理的北师版八上《勾股定理》说课稿(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

 北师版八上《勾股定理》说课稿1

 一、教材分析:

 (一)教材的地位与作用

北师版八上《勾股定理》说课稿

 从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

 从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

 根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。

 (二)重点与难点

 为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。

 二、教学与学法分析

 教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。

 学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。

 三、教学过程

 我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。

 首先,情境导入古韵今风

 给出《七巧八分图》中的一组,让学生利用两组七巧板进行合作拼图。让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。

 第二步追溯历史解密真相

 勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

 从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

 突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面"勾三股四弦五"的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示"割"的方法,"补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。

 使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。

 以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。

 感性认识未必是正确的,推理验证证实我们的猜想。

 第三步推陈出新借古鼎新

 教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。学生会发现两种证明方案。

 方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。

 教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。

 第四步取其精华古为今用

 我按照"理解—掌握—运用"的梯度设计了如下三组习题。

 (1)对应难点,巩固所学。

 (2)考查重点,深化新知。

 (3)解决问题,感受应用。

 第五步温故反思任务后延

 在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

 然后布置作业,分层作业体现了教育面向全体学生的理念。

 北师版八上《勾股定理》说课稿2

 一、教材分析:

 勾股定理是学生在已经掌握了直角三角形的.有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。

 教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

 据此,制定教学目标如下:

 1、理解并掌握勾股定理及其证明。

 2、能够灵活地运用勾股定理及其计算。

 3、培养学生观察、比较、分析、推理的能力。

 4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

 二、教学重点:

 勾股定理的证明和应用。

 三、教学难点:

 勾股定理的证明。

 四、教法和学法:

 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:

 以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

 切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

 通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

 五、教学程序

 本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

 (一)创设情境以古引新

 1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

 2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

 3、板书课题,出示学习目标。

 (二)初步感知理解教材

 教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

 (三)质疑解难、讨论归纳:

 1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

 2、教师引导学生按照要求进行拼图,观察并分析;

 (1)这两个图形有什么特点?

 (2)你能写出这两个图形的面积吗?

 (3)如何运用勾股定理?是否还有其他形式?

 这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

 (四)巩固练习强化提高

 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

 2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

 (五)归纳总结练习反馈

 引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

 北师版八上《勾股定理》说课稿3

 一、教材分析

 (一)教材地位

 这节课是九年制义务教育初级中学教材北师大版八年级第一章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

 (二)教学目标

 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

 过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

 情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

 (三)教学重点:

 经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

 教学难点:用面积法(拼图法)发现勾股定理。

 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

 二、教法与学法分析:

 学情分析:八年级学生已经具备一定的观察、归纳、猜想和推理的能力、他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强、

 教法分析:结合八年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

 三、教学过程设计

 1、创设情境,提出问题

 2、实验操作,模型构建

 3、回归生活,应用新知

 4、知识拓展,巩固深化5。感悟收获,布置作业

 (一)创设情境提出问题

 楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火?

 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。

 实验操作模型构建

 1、等腰直角三角形(数格子)

 2、一般直角三角形(割补)

 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。

 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

 通过以上实验归纳总结勾股定理。

 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律。

 回归生活应用新知

 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

 四、知识拓展巩固深化

 基础题,情境题,探索题。

 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。

 基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

 设计意图:这道题立足于双基、通过学生自己创设情境,锻炼了发散思维、

 情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

 探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

 五、感悟收获布置作业:

 这节课你的收获是什么?

 1、课本习题2.1

 2、搜集有关勾股定理证明的资料。

 设计说明:

 1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法、

 2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。

 北师版八上《勾股定理》说课稿4

 一、教材分析

 1、教材的地位和作用

 它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。

 因此他的教育教学价值就具体体现在如下三维目标中:

 知识与技能:

 1、经历勾股定理的探索过程,体会数形结合思想。

 2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。

 过程与方法:

 1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。

 2、在观察、猜想、归纳、验证等过程中培养学生们的数学语言表达能力和初步的逻辑推理能力。

 情感、态度与价值观:

 1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。

 2、在探究活动中,体验解决问题方法的多样性,培养学生们的合作意识和然所精神。

 3、让学生们通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。

 由于八年级的学生们具有一定分析能力,但活动经验不足,所以

 本节课教学重点:勾股定理的探索过程,并掌握和运用它。

 教学难点:分割,补全法证面积相等,探索勾股定理。

 二、教法学法分析:

 要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:

 先从学生们熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生们在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生们自己的课堂。

 学法:我想通过“操作+思考”这样方式,有效地让学生们在动手、动脑、自主探究与合作交流中来发现新知,同时让学生们感悟到:学习任何知识的最好方法就是自己去探究。

 三、教学程序设计

 1、故事引入新课,激起学生们学习兴趣。

 牛顿,瓦特的故事,让学生们科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。

 2、探索新知

 在这里我设计了四个内容:

 ①探索等腰直角三角形三边的关系

 ②边长为3、4、5为边长的直角三角形的三边关系

 ③学生们画两直角边为2,6的直角三角形,探索三边的关系

 ④三边为a、b、c的直角三角形的三边的关系,(证明)

 ⑤勾股定理历史介绍,让学生们体会勾股定理的文化价值。

 体现从特殊到一般的发现问题的过程。

 3、新知运用:

 ①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)

 ②在直角三角形中,已知∠B=90°,AB=6,BC=8,求AC.

 ③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?

 ④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”、他们仅仅少走了步路(假设2步为1米),却踩伤了花草、

 4、小结本课:

 学完了这节课,你有什么收获?

 老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。

 北师版八上《勾股定理》说课稿5

 勾股定理就是继续学习的一个直角三角形的判断定理,下面就是我整理的勾股定理说课稿苏教版,欢迎来参考!

 一、教材分析

 勾股定理就是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它就是直角三角形的一条非常重要的性质,就是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,就是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。

 据此,制定教学目标如下:

 1、理解并掌握勾股定理及其证明。

 2、能够灵活地运用勾股定理及其计算。

 3、培养学生观察、比较、分析、推理的能力。

 4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。

 教学重点:勾股定理的证明和应用。

 教学难点:勾股定理的证明。

 二、教法和学法

 教法和学法就是体现在整个教学过程中的,本课的教法和学法体现如下特点:

 1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。

 2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。

 3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。

 三、教学程序

 本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:

 (一)创设情境以古引新

 1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾就是3,股就是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。

 2、就是不就是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。

 3、板书课题,出示学习目标。

 (二)初步感知理解教材

 教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。

 (三)质疑解难讨论归纳

 1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。

 2、教师引导学生按照要求进行拼图,观察并分析;

 (1)这两个图形有什么特点?

 (2)你能写出这两个图形的面积吗?

 (3)如何运用勾股定理?就是否还有其他形式?

 这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。

 (四)巩固练习强化提高

 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。

 2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。

 (五)归纳总结练习反馈

 引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。

 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【北师版八上《勾股定理》说课稿】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/499329.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时1.8422秒, 内存占用2.03 MB, 访问数据库24次

陕ICP备14005772号-15