2023国家公务员考试行测数量关系:当一元二次函数极值遇上零点

 2024-12-09 10:51:01  阅读 818  评论 0

摘要:理论铺垫对于一元二次函数,需要了解到其图像是关于对称轴对称的抛物线,并且最值是在对称轴位置取得。一元二次函数表达式有一般式、顶点式和零点式等多种表达式,而在考试中主要是针对零点式的考查,所谓的零点式是什么呢?零点式指的是形如y=ax+bx+c(a≠0)(a、b、c是常数)的
理论铺垫

对于一元二次函数,需要了解到其图像是关于对称轴对称的抛物线,并且最值是在对称轴位置取得。一元二次函数表达式有一般式、顶点式和零点式等多种表达式,而在考试中主要是针对零点式的考查,所谓的零点式是什么呢?

零点式指的是形如y=ax²+bx+c(a≠0)(a、b、c是常数)的函数,若y=0有两个实根此表达式即为零点式,同时抛物线与x轴有交点这两个点即为零点,而零点是关于对称轴对称的,所以y的最值在对称轴取得。

2023国家公务员考试行测数量关系:当一元二次函数极值遇上零点

对于使用零点法解决一元二次函数的步骤为:

第一步:通过观察二次项的系数a,确定抛物线开口方向。若a>0,抛物线开口向上,有最小值,没有最大值(建议删掉);若a<0,抛物线开口向下,有最大值,没有最小值(建议删掉)。

第二步:令y=0,得出两个实根

第三步:通过零点坐标得出对称轴,将x数值代入函数式得出y的最值。

例题
例题1

某商品的进货单价为80元,销售单价为100元,每天可售出120件。已知销售单价每降低1元,每天可多售出20件。若要实现该商品的销售利润最大化,则销售单价应降低的金额是:

A.5元 B.6元 C.7元 D.8元

解析C。所求为销售利润最大化,题干中给出的条件为进价、售价和销量,可以利用公式:总利润=(售价-进价)×销量,表达出数据之间的关系,不妨设销售单价应降低的金额为x元,则每天多售出20x件,可得总利润y=(100-x-80)(120+20x),得出零点式的一元二次函数表达式。

第一步:通过观察二次项的系数a=-20,a<0,抛物线开口向下,有最大值,没有最小值(建议删掉)。

第二步:令y=0,得出两个实根同时可知零点为A(20, 0)和B(-6, 0)。

第三步:通过零点坐标得出对称轴即当销售单价降低7元时,得到销售利润最大值。故选择C项。

例题2

某苗木公司准备出售一批苗木,如果每株以4元出售,可卖出20万株,若苗木单价每提高0.4元,就会少卖10000株。那么,在最佳定价的情况下,该公司最大收入是多少万元?

A.60 B.80 C.90 D.100

解析C。所求为销售收入最大化,题干中给出的条件为售价和销量,可以利用公式:总收入=售价×销量,表达出数据之间的关系,不妨设提高金额为0.4x元,则每天少售出x万株,可得总收入y=(4+0.4x)(20-x),得出零点式的一元二次函数表达式。

第一步:通过观察二次项的系数a=-0.4,a<0,抛物线开口向下,有最大值,没有最小值(建议删掉)。

第二步:令y=0,得出两个实根同时可知零点为A(-10, 0)和B(20, 0)。

第三步:通过零点坐标得出对称轴即x=5时,得到销售收入最大值y=(4+0.4×5)×(20-5)=90万元。故选择C项。

通过上述例题的解析,各位对零点式的一元二次函数解题思路应该能有一个认识,需要依照对题干的理解整理出函数的表达式,然后利用解题步骤逐步推出即可。各位考生在以后做题中需要多加练习,熟练掌握。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2023国家公务员考试行测数量关系:当一元二次函数极值遇上零点】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/offcn/497895.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时2.8434秒, 内存占用1.98 MB, 访问数据库24次

陕ICP备14005772号-15