这是国内中文核心一些石油相关期刊,供您参考一下:
1 石油勘探与开发2 石油学报3 天然气工业 4 石油与天然气地质 5 石油化工 6 石油实验地质7 石油大学学报自然科学版(中国石弊告油大学学报自然科学版)8 石油钻采工艺9 油田化学10 新疆石油地质明卜饥 11 西南石油学院学报(改名为:西南石油大学学报) 12石油机械 13钻采工艺 14 石油炼制与化工15 大庆石油地质与开发16西安石油大学学报自然科学版17 石油地球物理勘探18 油气地质与采收率19 油气储运20 石油天然气学报21中国海上油气22 石油钻探技术 23 大庆石油学院学报24 石油物探25 油气田地面工程26天然气地球科学27 石油学报石油加工28测井技术29断块油气田
其中石油学报是EI部分收录。
国外SCI收录期刊主要有:
1 AAPG BULLETIN 《美国石油地质学家协会通报》美国
2 BULLETIN OF CANADIAN PETROLEUM GEOLOGY 《加拿大石油地质学通报》加拿大
3 CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS 《燃料与石油化学和工艺学》美国
4 CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY 《中国炼油与石油化工》中国
5 GEOARABIA 《中激返东石油地球科学杂志》巴林
6 HYDROCARBON PROCESSING 《烃加工》美国
7 INTERNATIonAL GAS ENGINEERING AND MANAGEMENT 《国际天然气工程与管理》英国
8 JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY 《加拿大石油技术杂志》加拿大
9 JOURNAL OF GEOPHYSICS AND ENGINEERING 《地球物理学与工程学》英国
10 JOURNAL OF PETROLEUM GEOLOGY 《石油地质学杂志》英国
11 JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING《石油科学和石油工程杂志》荷兰
12 JOURNAL OF THE JAPAN PETROLEUM INSTITUTE 《日本石油学会志》日本
13 OIL & GAS JOURNAL 《石油与天然气杂志》美国
14 OIL & GAS SCIENCE AND TECHNOLOGY REVUE DE L INSTITUT FRANCAIS DU PETROLE 《石油、天然气的科学与技术;法国石油研究所杂志》法国
15 OIL GAS-EUROPEAN MAGAZINE 《欧洲石油气杂志》德国
16 OIL SHALE 《油页岩》爱沙尼亚
17 PETROLEUM CHEMISTRY 《石油化学》美国
18 PETROLEUM GEOSCIENCE 《石油地质科学》英国
19 PETROLEUM SCIENCE 《石油科学》德国
20 PETROLEUM SCIENCE AND TECHNOLOGY 《石油科学与技术》美国
21 PETROPHYSICS 《岩石物理学》美国
22 SPE DRILLING & COMPLETION 《石油工程师协会钻井与完井》美国
23 SPE JOURNAL 《石油工程师协会杂志》美国
24 SPE PRODUCTION & OPERATIONS 《石油工程师协会生产和操作》美国
25 SPE RESERVOIR evalUATION & ENGINEERING 《石油工程师协会油藏评估与工程》美国
26 VISION TECNOLOGICA 《技术视野》委内瑞拉
SPE相对容易一些
我国油田水文地质的发展可划分为三个阶段。
1起步阶段
旧中国的石油工业极其落后,绝大部分沉积盆地没有进行过石油地质调查,油气产量极低,只有玉门、延长等几个小油田。从事石油地质的技术人员甚微,石油水文地质调查与研究更是一个空白点。新中国成立后,我国石油工业得到飞跃发展,在主要含油气盆地内开展了大规模的石油和天然气的普查与勘探工作。随着油气勘查的需要,在酒泉盆地、准噶尔盆地、柴达木盆地、四川盆地及鄂尔多斯盆地相继进行了有计划的区域水文地质调查,开始研究地下水与油气的关系,油田水资料逐日增多。与此同时,北京、长春、成都等地质院校和其他大学开设了水文地质(包括油田水)课程,邀请苏联专家、学者来华讲学,教科书和主要参考书刊基本上是苏联的翻译稿,如:《普通水文地质学》(欧维奇尼柯夫);《水文地质学概论》(克利门托夫);《地下水普查与勘探》(卡明斯基);《水文地质学讲座》(克雷洛夫);《天然水系中的油田水》(苏林);《油矿水文地质学》(苏哈列夫)。在油田水文地质生产与科研中,主要沿用着苏联的技术与方法,按照苏联专家的建议进行工作。1955年初,我国正式开始进行区域性综合水文地质普查。同年,在石油地质学家关士聪院士的倡导下,地质部西北地质局在六盘山地区开展了地下水石油普查工作,开创了我国水化学找油的先河。其后地质部物探所在四川、克拉玛依等地区进行了水化学找油试验。
该阶段主要是学习原苏联的经验、技术与方法,开始建立我国的油田水文地质事业,培养人才、配合石油普查勘探进行区域水文地质调查。
2总结研究阶段
从20世纪50年代后期至70年代末,随着我国东部油气普查勘探的重大突破(松辽盆地和渤海湾盆地等)和油田开发事业的飞跃发展,油田水文地质基础资料日益丰富,许多油田(大庆、扶余、胜利、大港、冀中、江汉、河南、长庆、四川等)都配备了水文地质技术人员,组织成立了专门的油田水研究科室。他们从本地区油气勘探实际需要,一方面承担油田供水水文地质调查任务,另一方面,探讨油气赋存的水文地质条件,总结油田水化学成分的基本特征。例如:地质部石油局第三普查勘探大队综合研究队专设水文地质组,以鄂尔多斯盆地中生界三叠系和侏罗系为主,研究油气运移的水文地质条件、探讨三延(延长、延安、延川)地区油气富集的水文地质规律、总结已知油田(永坪、延长、枣园等)的水文地球化学特征、进行水化学找油试验,探讨水化学指标与方法;长庆弊郑油田水文地质科研人员(刘孝汉等),对鄂尔多斯盆地侏罗系下统油田水特征及其与油气藏保存条件等进行了总结研究,系统整理了李庄子、马家滩、大水坑、马岭、华池等油田的中-下侏罗统和上三叠统油田水分析资料;四川石油管理局(刘方槐等)对四川盆地进行大规模的区域水文地质调查研究,提出了地层水由盆地内部向盆地周边运动的新观点,得出与传统认识相悖的结论,对川东地区三叠系、二叠系、石炭系水文地质条件与构造内含气程度进行了预测;成都地质学院迟键(孙世雄等)和水文地质工程地质研究所(汪蕴璞等)对四川盆地卤水形成、古水文地质条件及卤水活动的地球化学形迹等进行了研究;玉门油矿水文地质人员根据鸭儿峡、石油沟和老君庙油田的钻孔水化学资料,结合区域水文地质成果,建立了水化学垂直剖面,除水型随时代变老变为CaCl2型外,其他水化学成分(矿化度、变质系数、氯硫比值等)都没有出现原苏联学者指出的随深度增加而增高(降低)的有序现象;在松辽盆地,大庆油田科学研究设计院(王军、黄福堂等),总结了油田水化学成分特征——以单一的NaHCO3型水、以Cl组、Na亚组为主、矿化度1~12g/L、含有I、Br、B、NH4等微量组分。并根据矿化度和盐化系数(rCl/rHCO3+rCO3)二者的关系分为三类:较高矿化度(6~12g/L)的NaHCO3型水、中等矿化度(3~6g/L)的NaHCO3型水,盐化系数05~10之间、低矿化度(<3g/L)的NaHCO3型水,盐化系数01~5之间,后者不利于油气保存。探讨了喇嘛甸、萨尔图、杏树岗三个油区油田注水过程中油气水物理化学性质的变化,初步总结了油气水物理化学性质的分析指标,在注水过程中,由于氧化、溶解、油层温度、码卜巧压力、生物化学作用和脱水过程中轻质馏分的损失,是油气水物理化学性质发生变化的因素;吉林油田石油研究院(杨忠辉等)对松辽盆地南部油田水分析数据,利用函数式计算了扶余、新木、红岗、乾安、农安等地区判别函数值进行含油气预测,并对水中可溶有机组分(苯、有机酸)等进行了试验总结;石油部石油勘探开发研究院(李济民等)总结了油田水特性指标的应用规律,以脱硫系数为主,结合封闭系数(rNH4+rH2S/rSO4)可以说明油气的存在,用成因系数结合矿化度,脱硫系数和钠氯比值的变化规律判断油气水运移方向,总结了正向和反向油田水化学剖面特征及其与油气藏的关系;华北石油勘探指挥部勘探研究院(谢家声等)总结了冀中坳陷古潜山和第三纪水文地质条件及其与油气运移、聚集、保存的关系、地下水化学成分,尤其是水中有机组分(苯及其同系物、酚、挥发性有机酸、环烷酸和铵)与油气的关系;河南石油会战指挥部勘探开发研究院(汪义先等)针对着南襄盆地(尤其是泌阳凹陷)油田水为低矿化度的NaHCO3型水的特点,提出适用于本区的水文地球分学垂直分带和水化学类型;江汉石油管理局勘探开发研究院(李际明、余莲声)总结了潜江凹陷下第三系高矿化度、高硫酸根地下水化学成分(包括常量组分、矿化度、碘、溴、硼、锂等)在平面和纵向上的分布规律,探讨了地下水化学成分及其与油气的关系,认为矿化度高达200g/L以上的油田水是发展盐化工业的重要原料,有宽阔的开发应用前景;长春地质学院(孙杉、张先起等)研究了深成地下水(存在于地壳下部岩浆壳和上地幔中的水)在石油成矿过程中的作用,并以冀中坳陷不同时代(第四系与上第三系、下第三系和古潜山)地下水为例研究了氢、氧同位素的组成、结合水化学成分特征,探讨了地下水来源、成因及其与油气的关系;成都地质学院(孙世雄、沈治安等)研究了我国海相和陆相油田水化学成分特征,指出古水文地质分析在油田形成、保存与破坏中的作用与意义,结合冀中古潜山油田探讨了古水文地质的研究方法与内容,提出了渤海湾盆地古水动力的四个区带;地质部地质科学院水文地质工程地质研究所(汪蕴璞、王田荣、王东升、王焕夫等)研究了四川盆地卤水的特点与成因;1975年和1976年分别在《水文地质工程地质》与《地质学报》发表了《评苏林油田水理论中的几个问题》,认为B、A苏林油田水理论有一定的局限性,束缚着我国油田水理论的建立;新疆石油管理局勘探开发研究院(王仲侯等)总结克拉玛依油田水化学成分时,在三叠系(56#)油田水中发现了矿化度高达26~27g/L以上的Na2SO4型水,在垂直剖面上与CaCl2型水或NaHCO3型水交替出现,在平面分布上介于CaCl2型水和NaHCO3水之间;他还对《评苏林油田水理论中的个问题》一文提出不同的意见;地质部石油101队(张金来、刘崇禧等)对我国已勘探开发的主要含油气盆地的水文地球化学特征进行了比较系统的整理研究,归纳了我国陆相油田水化学成分的组成——矿化度、离子比值、有机组分,微量元素、同位素(氢、氧和碳)等;提出离子组合的概念和油田水化学成分分类的几种思考方案;进行了地下水的蒸发、溶滤等模拟试验及水化学找油方法的试验与总结;应用数理统计方法研究油田水化学组分之间的关系;开发了油田水有机组分的分析测试技术与方法等。
上述科技工作者的辛勤劳动,促进了我国油田水研究地飞跃发展,逐步形成了或迎来了一门石油地质与水文地质密切结合的边缘学科——油气水文地质学,并开始探索具有我国石油地质理论特色的水文地质勘探程序和研究方法,走向了为区域含油气远景预测评价及油田勘探开发服务的道路。
3开拓创新发展阶段
从20世纪80年代初,我国油气水文地质工作进入了一个新的高速发展阶段;取得丰富的研究成果与良好地应用效果,主要表现在以下几个方面:
1)中国地质学会石油地质专业委员会于1981年在合肥召开了“中国油田水地球化学学术讨论会”,来自地质部、石油工业部、中国科学院及高等院校代表75人,提交学术论文42篇。中国科学院学部委员、中国地质学会石油地质,专业委员会主任委员关士聪主持了会议,中国科学院学部委员、水文地质专家张宗祜作了书面发言。会议论文涉及的内容包括:我国主要含油气盆地油田水文地球化学特征与油气的关系、油田水化学成分分类、油田水起源、油气藏的浅层水文地球化学效应、水化学法在石油普查勘探中的应用、古水文地质分析与油气远景评价、深成水在油气矿产形成中的作用、计算机新技术在油田水研究中的应用,水动力条件在油气藏形成中的作用,分析测试技术方法等。本次会议是我国首次专门的油田水会议。石油水文地质工作者聚集一堂,在“百花齐放、百家争鸣”的方针指导下,进行成果交流、自由讨论、各抒己见、畅所欲言,学术气氛异常活跃。这次会议检阅了成果,交流了经验,明确了方向,增强了协作。对促进我国油田水研究、提高整体研究水平,加快油田水事业的发展步伐具有深远的意义,在国内外产生一定的影响。
2)吸取国内外油田水文地质研究的经验,通过油气生产实践,使我国油田水文地质工作进入了以石油地质为基础、围绕着油气普查勘探与开发的实际需要,走向为油气生产服务的道路。结合以勘探开发我国东部陆相油气田为主的总目标,重点研究了陆相油田水文地质特征,其后加大了海相油田水文地质研究的力度,取得了一些有独创特点的研究成果,每年都有不少论文发表,按年份举例如下:
我国油田水的离子组合特征(地球化学,1978年,刘崇禧);我国油田水的基本特征及其分类讨论(地质论评,1979年,张金来);一个值得注意的地质信息-酚(古潜山,1980年,谢家声);天然气中凝析水和烃类水化物的形成(天然气工业,1981年,刘伦);油田水文地质勘探中水化学及其特征指标的综合应用(石油勘探与开发,1982年,刘济民);油气田的水文地球化学标志及其应用(石油及天然地质,1982年,杨忠辉);泌阳凹陷油田水文地球化学特征及其与油气的关系(石油实验地质,1983年,汪义先);泰州地区古水文地质条件与油气(石油与天然气地质,1983年,龚与觐);四川盆南部水化学场及其成因(地球科学,1984年,汪蕴璞);利用地层水中的溶解气进行含油气远景评价(天然气工业,1985年,刘方槐);济阳坳陷古水文地质条件与油气聚集(石油实验地质,1986年,杨绪充);寻找油气田的水文地球化学标志(石油勘探与开发,1987年,刘崇禧);潜江凹陷油田水有机组分的地球化学特征(石油实验地质,1988年,林九皓);论含油气盆地的地下水动力环境(石油学报,1989年,杨绪充);中原油田文留地区矿化度数据的三维分析(地质科学,1990年,张广锐);初探地下水溶解气及其对气藏形成的影响(石油勘探与开发,1991年,孙永祥);再探地下水对气藏形成的影响(石油勘探与开发,1992年,孙永祥);松辽盆地北部地层水中“指纹标志”化合物的分布特征及其与油气关系的研究(地球化学,1993年,黄福堂);扶扬油层水化学场特征及其成因(大庆石油勘探与开发,1994年,楼章华);塔里木盆地油田水有机地球化学特征分类及其石油地质意义(石油勘探与开发,1995年,李伟);塔里木盆地油田水地球化学(地球化学,1996年,蔡春芳);西湖凹陷油气运聚成藏的水文地质论证(中国海上油气,1997年,汪蕴璞);沁水盆地煤层气的水文地质控制作用(石油勘探与开发;1998年,池卫国);油田水动力系统与油气藏的形成(海洋地质与第四纪地质,1998年,陈建文);盆地三维水动力数值模拟方法及其应用(石油勘探与开发,2000年,邓林);塔里木油田水溶重烃研究及其应用(新疆石油地质,2001年,陈传平);塔河油田及邻区地层水成因探讨(石油实验地质,2002年,蔡立国);水溶气资源富集的主控因素及其评价方法的探讨(天然气地球科学,2003年,武晓春);碳酸根和碳酸氢根测定方法和自动测定仪(现代仪器,2004年,郑志霞);水动力条件对煤层气含量的影响-煤层气滞留水控气论(天然气地质科学,2005年,秦胜正等。)
上述有代表性论文是从覆盖我国主要含油气盆地大量的油田水文地质基础研究中提炼出来的,从一个侧面反映了我国现阶段研究的现状与水平。值得提及的是石油生产单位,科研机构和大专院校等不仅加大了油田水文地质研究的力度,而且形成了生产与科研相结合,多单位协作攻关的研究群体。石油工业部在翟光明院士的组织下,对全国各油田的水文地质特征进行了比较系统的总结。油田水文地质研究纳入国家科技攻关项目,如“七五”期间的“四川盆地二叠系水文地质条件对油气运聚与保存控制的探讨”(四川石油管理局杨家琦等);“九五”期间的“塔里木盆地油田水文地质与油气聚集关系的研究”(石油勘探开发研究院李伟等);和“川西地区上三叠统水化学场、水动力场与油气富集关系研究”(中石油廊坊分院天然气所吴世祥等)。国家自然科学基金资助项目,如“我国大陆区新生代深层地下水系统演化与地下水成矿作用”(中国地质大学沈照理);“塔里木盆地古生界油田水的成因和混合证据”(中国科学院地质与地球物理研究所蔡春芳)。大专院校的水文地质博士生也将油田水文地质作为选题进行研究,如“临邑盆地水化学成分特征及其研究意义”(1991年,张作辰,中国地质大学);“泌阳凹陷石油运移聚集的水化学场与水动力场研究”(1992年,李广贺,中国地质大学)。江汉石油学院仅83级本科生就有五人以油田水研究作为毕业论文。有些油田也将油田水文地质列入本系统重大基础研究课题,如:“克拉玛依油田八区油气水研究与油源重新探讨”和“准噶尔盆地西北缘石炭系油田水化学研究”(新疆石油管理局勘探开发研究院,王仲侯,1981年和1985年);“冀中坳陷地下水的氢和氧同位素组成与成因”(长春地质学院,孙杉等,1981年);“冀中坳陷水文地质条件与油气分布”(华北石油勘探开发设计研究院,赵宝忠等,1984年);“济阳坳陷油田水水化学特征及其与油气聚集的关系”、“东营凹陷重质油形成的水文地质条件的研究”(胜利石油管理局地质科学研究院,任发琛等,1989年);“莺-琼盆地油田水化学研究”(中海油南海西部石油公司地质研究院,1989年);“沉积盆地中油气运移聚集与区域地下水流动之间的关系”(中国地质大学,王明等,1991年);“泌阳凹陷古水文地与无机络合物研究”(河南石油管理局,周留纪,1991年)“松辽盆地北部扶扬油层地下水动力特征与油气藏关系的研究”(大庆石油管理局勘探开发研究院,1991年);“东营凹陷流体历史与油气藏形成分析”(胜利石油管理局勘探事业部等,2001年);“贝尔断陷地层水分析数据含油性的综合评价”(大庆石油管理局勘探开发研究院,2005年);“乌尔逊凹陷地下水特征与油气关系的研究”(大庆石油管理局勘探开发研究院,2006年);“四川盆地川东地区地下水与油气关系研究”(中国石油勘探开发研究院,李伟等,2002~2005年)。汪蕴璞、王焕夫在吸取前人古水文地质研究成果的合理部分,提出水文地质期的概念以区别于水文地质旋回。“期”是沉积盆地水文地质发育史的组成部分,是反映地下水形成的一个特定的地球化学环境的地质时间段,以地壳构造运动、水动力条件及地球物理、地球化学场三个标志划分出:沉积作用水文地质期、淋滤作用水文地质期、埋藏封闭作用水文地质期、构造热液作用水文地质期。并以冀中坳陷和四川盆地为例,讨论了其意义,有较高的应用价值。
地球化学和石油地质学家也十分重视油田水文地质学,并进行有意义的研究。例如:梅博文教授在《储层地球化学译文集》(1992年)写到:油田水中有机酸和CO2是控制储层中矿物溶解、沉淀过程的主要因素,分析测试它们的浓度与组成,不仅对次生孔隙的预测有重要意义,而且为避免油层损伤和结垢采取新的工艺措施,提供了水文地球化学依据。林任子教授在《储层地球化学进展及应用》(1995年)指出:伴随着烃源岩的压缩失水过程,生油层中大量的有机酸被排挤进了储集层,形成了金属有机酸络合物通常溶于水,因此,研究油田水中有机酸,可以在认识次生孔隙形成机制的基础上,利用地球化学趋势来预测孔隙度增长过程的发生和范围。王铁冠教授编译的《油藏地球化学》也涉及到油田水文地球化学问题,由于石油含有多种化合物,在石油、水和矿物基质之间呈现差异分配现象,在无相态变化的情况下,储层石油的组成是排烃成分加上运移途径中水相和固相分配作用所引起变化的函数。因而可以通过对储层石油和地层水中精心选择的化合物测定作出评估,如有机酸、酚类等化合物。另一方面,流体(水、气、油)的成分经常是非均质性的,通过使用灵敏的天然同位素示踪剂,可检测出微弱的非均质性,及利用地层水的变化评价油藏的分隔性。蔡春芳研究员等以塔里木盆地为主,探讨了埋藏成岩过程中水-岩相互作用,根据油田水化学成分结合流体势变化追踪油气运移与聚集途径。
地质流体分析是当今国际地学研究的前沿课题。沉积盆地的岩石孔隙-裂隙内都贮存有流体(石油、天然气和地下水),其中水是主体部分。在油气地质领域内,油气的多期次运、聚、散、保都是在地下水的参与下进行的,分析沉积盆地内水文地质条件是研究油气成藏规律的有效途径。我国油气勘查家和水文地质家已经携手共同进行研究。
化验分析是油田水文地质研究的重要技术手段,我国各油田都建立了油田水分析测试实验室。近二十年来,随着科学技术的进步,现代分析检测仪器设备的不断更新,油田水分析测试技术与方法有了很大的改进和提高,正向着系列化、标准化、定量化的方向发展,建立了一套比较完善的油田水化学成分分析测试方法,包括:样品采集与保存方法;不稳定组分的现场测试——pH、EH、水温、溶解氧、电阻率、硫化氢、二氧化碳等;样品的前期预处理技术(萃取、富集、提纯、酸化等);岩石样品的相关参数分析(孔隙度、渗透率、残余盐等);开发了油田水中有机组分的分析技术方法(可溶气态烃、苯酚同系物及芳烃化合物、烷烃组分、有机酸等);引进了水中氢、氧、碳、锶的同位素分析技术;油田水中微量元素快速分析测试的等离子色谱分析;开创了三维荧光、同步荧光的鉴别分析技术等。油田水化学分析应用了色谱(气相、液相、色质等)、光谱、红外、质谱等现代测试仪器。提高了分析灵敏度和数据的可信度。各油田先后建立了油田水分析实验手册与规程,统一了分析方法。大庆油田勘探开发研究院(黄福堂、蒋宗乐等,1995年)对油田水分析与应用作了系统的总结。油田水分析化验技术人员,发表了许多有创新性质的论文,如:水沥青的分析方法及石油地质意义(石油实验地质,吴德云,1982年);水中气态烃的脱气方法(石油实验地质,崔秀荣,1982年);应用紫外吸收光谱及荧光谱测定地层水中的芳烃(石油实验地质,伍大俊,1982年);地层水中苯系物的色谱分析方法及其石油地质意义(石油实验地质,蔡映宝,1982年);薄层层析法分离与鉴定水中酚系物(石油实验地质,伍大俊,1983年);电位容量法测定油田水中Ca2+,Cl-离子(国外油田工程,黄福堂,蒋宗乐,1989年)
20世纪80代以后,我国油田水文地质工作者,对油田水文地质特征、水文地质勘探工作方法及其在油气勘查中的效果等进行了系统总结,出版了以下专著:
1987年,地质矿产部水文地质工程地质研究所、石油工业部华北石油勘探开发研究院、地质矿部产部石油地质综合大队101队。《油田古水文地质与水文地球化学》。北京:科学出版社。
1988年,刘崇禧,孙世雄。《水文地球化学找油理论与方法》。北京:地质出版社。
1991年,刘方槐,颜婉荪。《油田水文地质学原理》。北京:石油工业出版社。
1991年,邸世祥。《油田水文地质学》。西安:西北大学出版社。
1993年,杨绪充。《油气田水文地质学》。北京:石油大学出版社。
1994年,高锡兴。《中国含油气盆地油田水》。北京:石油工业出版社。
1995年,楼章华,高瑞琪,蔡希源等。《松辽盆地流体历史分析》。石油实验地质增刊。
1997年,蔡春芳,梅博文等。《塔里木盆地流体-岩石相互作用研究》。北京:地质出版社。
1998年,黄福堂,蒋宗乐等。《油田水的分析与应用》。北京:石油工业出版社。
1999年,黄福堂。《松辽盆地油气水地球化学》。北京:石油工业出版社。
1999年,贾庆仲等译。《油田岩石与水地球化学论文集》。北京:石油工业出版社。
从20世纪末,我国石油水文地质研究进入了以中青年科技工作者为主体的新时代,他们继往开来承担着生产与科研的繁重任务、迎接新世纪的挑战。这些朝气蓬勃、勇于实践、善于探索、敢于创新的青年群体的涌现,以及密切结合生产、理论联系实际的研究成果,展示了我国石油水文地质界人才济济,后继有人的可喜局面。近年来,一些为解决油气远景预测与勘探开发中实际问题的水文地质研究成果,表现出一定的水平。预示着我国油田水文地质工作将跨入具有自身特色、为油气生产服务的新时期。
综上所述,我国油田水文地质工作,已经走出“学国外、跟国外、重复国外”的阶段,在陆相成油理论的指导下,其研究领域不断拓宽、深化、自陆地到海洋、由陆相到海相、从石油到天然气(包括煤成气、生物成因气)、还涉及深成地下水,整体研究水平有很大提高,进入了解决我国石油地条件下水文地质问题的新阶段。
前述油田水文地质研究现状可以看出,各国研究的侧重点有所差异。总体来讲,欧美国家十分重视油气运聚的水动力条件研究,起步或研究的深度远远早于油田水化学成分的研究;原苏联是系统研究油田水化学成分最早的国家,最先提出古水文地质研究的理论与方法;我国从研究陆相油田水化学成分特征及水化学找油技术方法入手,在吸取国外先进理论与经验的基础上,走向水动力与水化学相结合、古代和现代水文地质条件同时研究的道路。
每门科学的性质都是由其所研究的物质运动的形式和特征决定的。例如,力学研究物质的力学运动,物理学研究物质的声、光、电、磁、热等物理运动,化学则专门研究物质的化学运动——各种物质的组成、结构、性质以及物质分解和化合的变化。只有从物质运动特性来认识一门科学才易于把握该科学的本质。地球化学属于地球科学,它的研究对象是地球,那么地球系统中的物质运动 (包括地球各子系统中的物质运动)究竟属于什么样的运动 这一问题在过去由于受地质学发展和认识水平的局限,长期以来是模糊不清的,而现在已经逐步明朗。
现今科学界的共识是地球系统的物质运动,以及太阳系的物质运动均为高级综合的物质运动,其中包含着相互作用和相互制约的力学、化学和物理学形式的运动,在地球表层系统中还有生物学形式运动的参与。例如,力学运动表现为星体的轨道运动、板块的移动、地形的隆升与拗陷、岩层的变形、海洋和大气环流等;化学运动表现为太阳星云自中心向外随温度压力变化而发生的物质化学分异,地球早期核、幔和壳分离形成过程中物质的分异;岩浆、风化、沉积和变质等作用过程中伴随着的熔融、结晶、溶解、沉淀、蒸发、凝聚、吸附、离子交换等机制所导致的原物相 (矿物及岩石)的消失与新物相的形成等过程;地球中的热、电、地震波等的传导、物质密度和重力的分布、磁场的变化等则属于地球物质的物理运动;生物通过光合作用吸收大气圈中的二氧化碳同时向其中输入氧,从而促使大气圈的成分变化,则属于典型生物活动对地球产生影响的生物学形式的运动。需要特别强调的是,寓于地球物质运动中的这些不同形式的基础运动总是相互依存、相互影响和相互制约的,有着不可割裂的联系。例如,俯冲作用可将俯冲板片具有表生自然化合物组合的岩石带入地壳深部 (力学运动),使岩石所处环境的温度和压力增高 (物理场的变化),而导致原始岩石矿物组合的失稳消失和新矿物组合的形成 (变质作用),并伴有化学元素的重组合和再分配 (化学运动)。
既然地球物质运动和地质运动本身均始终包含着相互联系的不同形式的基础运动,为了更全面地认识地球形成和演化等地学问题,就特别强调要从力学、物理学、化学和生物学等角度进行综合研究,即多学科的综合研究。另一方面,为了更深入闭察兄地没亮了解寓于地球物质运动中的力学、化学、物理学、生物学形式的运动及其规律,以便能在更深层次上进行综合,在地球科学中,除了主要由宏观地质体在时间和空间上的相互关系探讨固体地球发展动力学的地质学外,地球科学还必须要有研轿袭究海洋和大气动力学的学科——海洋动力学和大气动力学,研究地球系统物质物理运动的学科——地球物理学,以及研究地球系统物质化学运动的学科——地球化学。针对研究寓于地球物质运动中的生物学运动,形成了古生物学及生物地球化学,该分支学科通过研究煤田、石油、天然气成藏的形成,以及金属矿床学的生物成矿作用,揭示生物学运动在地球物质演化中的重大意义。
李婧婧1,2 王 毅1 马安来1 李慧莉1 张卫彪1
(1中国石化石油勘探开发研究院西北勘探研究中心,北京 100083;
2中国石油大学(北京),北京 102249)
摘 要 顺7井位于塔中Ⅰ号坡折带西北倾末端,在鹰山组钻遇凝析气藏。对顺7井天然气、原油的组成、碳同位素、金刚烷、生标化合物等综合研究表明:顺7井天然气组分碳同位素呈正序分布,且δ13C2<-28‰,表现出典型的油型气特征;天然气组分C2/C3值为28,C2/iC4为1139,结合δ13C1(-517‰)非常低的特征,判断凝析气是由原油热解生成的;原油以饱和烃组分为主,基本检测不到生标化合物,金刚烷山槐巧和C29ααα20R甾烷的含量表明顺7井原油的裂解程度达70%左右;综合原油及族组分碳同位素及塔中地区的石油地质情况,认为发生裂解的原油应来自寒武系—中下奥陶统烃源岩。
关键词 凝析气藏 原油裂解 金刚烷 顺7 塔中
A Discussion on Geochemistry and Origin of Condensates of
Well Shun-7 in Tazhong area,NW China
LI Jingjing1,2,WANG Yi1,MA Anlai1,LI Huili1,ZHANG Weibiao1
(1Exploration and Production Research Institute,SINOPEC,Beijing 100083,
China;
2、China University of Petroleum,Beijing 102249,China)
Abstract Condensate oil and natural gas were obtained from Yingshan Formation of Lower -Middle Ordovician from well Shun-7 located in Tazhong-Ⅰ faulted slope break zone,Tarim Basin,NW ChinaThe distribution of carbon isotopes of the gas components shows a normal carbon isotope sequence(i e,δ13C1<δ13C2<δ13C3)and δ13C2<-28‰shows the gas is typical oil-type gasOn the basis of the gas component(C2/C3: 28,C2/iC4:
1139)and carbon isotope properties(δ13 C1:-517‰),it is pointed that the gas may is the crude oil cracking gasThe conden-sate oil features in high content of saturate hydrocarbon and low content of aromatic hydrocarbon and non-hydro-carbon asphalteneThe carbon isotope of the con-densate oil from well Shun-7 is similar to that of the Cambrian-sourced oil from well TD-2,indicating the condensate oil of well Shun-7 might originated from the Cambrian source rocks
Key words condensate reservoir;oil cracking gas;diamondoid hydrocarbon;well Shun-7;Tazhong area
塔中Ⅰ号坡折带位于塔里木盆地卡塔克隆起北缘,呈北西逗键-南东走向,具有东高西低的构造格局,是塔里木盆地重要的油气构造单元[1,2]。沿坡折带自东向西已发现塔中26、塔中62、塔中82、塔中86、塔中83等井区油气藏,油气表现形式多样,包括明闹常规黑油、高蜡油、轻质油、凝析油及天然气,以轻质油气为主。目前有研究认为,塔中Ⅰ号坡折带奥陶系油藏在喜马拉雅期发生气侵,气侵严重的油藏变成凝析气藏,未发生气侵或气侵较弱的油藏流体仍保留黑油特征[3]。
顺7井位于塔中Ⅰ号断裂带上盘西北倾没端(图1),2010年12月在奥陶系鹰山组灰岩段裸眼酸压测试获油气流,截至2011年4月5日,累计产油152m3,累计产气近80×104m3。在拟合计算得到的流体相态图上,油气产层的地层压力、温度,皆位于地层流体临界温度的右侧,因此顺7井钻遇的是典型的凝析气藏。与之相邻的塔中45~86井区也在奥陶系也取得较好的油气勘探成果,TZ86等在良里塔格组钻遇凝析气藏[4]。
图1 塔中地区顺7井位置图
1 天然气地球化学特征
11 天然气组成特征
顺7井天然气以甲烷组分为代表的烃类气体为主,甲烷含量为8250%, 含量较高,达771%,干燥系数较低,为091,与相邻的凝析气藏TZ86较相似(表1)。与中1井奥陶系天然气相比,顺7井天然气中甲烷含量略低,重烃 含量稍高,干燥系数较低。天然气划分标准中,将甲烷含量>95%、 重烃含量不超过1%~4%、干湿指数大于19的烃类气体划分为干气。顺7井天然气显然属于湿气范畴。
表1 顺7井及相邻井区天然气组成
塔中Ⅰ号坡折带奥陶系天然气整体上具有N2含量较高、CO2含量普遍较低的特征[5]。N2含量最大值为184%(塔中241井),最小值为093%(塔中72井),主要分布在3%~15%,平均值为687%。CO2含量主体在2%~5%,含量大于10%的只有塔中30井(1345%)和塔中73井(175%),最小值为0283%(塔中24井)。顺7井天然气具有低N2、高CO2的特征,N2和CO2含量分别为054%、887%,与相邻的塔中86井有一定的差别,与塔中Ⅰ号坡折带奥陶系天然气组成差别也较大。前人的研究认为,天然气的非烃组成特征在一定程度上反映了油气成藏机理[5]。顺7井非烃组成特征说明,其成藏机理与塔中86井可能存在一定差异。
12 天然气组分碳同位素
顺7井天然气甲烷、乙烷、丙烷的碳同位素值分别为-517‰、-325‰、-282‰,呈δ13C1<δ13C2<δ13C3的正序分布,表现为典型的有机成因天然气特征。乙烷的碳同位素受热演化影响较小,受母质继承效应明显,一般认为,δ13C2为-28‰可以作为煤型气和油型气的分界点,即:δ13C2>-28‰与气体煤型气相关,δ13C2<-28‰与油型气相关。顺7井的δ13C2低于-30‰,属于油型气。图2是塔中部分天然气烃类1/n与δ13Cn之间的关系,当天然气为单一来源时,二者呈线性关系,否则呈折线型。塔中Ⅰ号坡折带中部、西部天然气均表现为直线型,东部的天然气则表现为折线型。顺7井天然气碳同位素与碳原子倒数关系与塔中Ⅰ号坡折带中部、西部天然气特征相似,构成良好的线性关系,说明顺7井天然气来源单一,是相同母质在单一营力作用下的产物。
顺7井天然气的一个非常显著的特征是甲烷碳同位素轻,仅为-517‰,且甲烷、乙烷碳同位素差值大,δ13C2-δ13C1为-18‰。WJStahl、戴金星等分别编制了北美、西欧和我国的天然气δ13C1 -Ro关系图,得到油型气δ13C1 -Ro关系回归方程(表2),根据不同公式推算得到的Ro值虽然有一定差别,但总体看来,均反映成熟度较低,属未成熟阶段。虽然在未成熟阶段陆相有机质树脂质可以直接生成凝析油(Rogers,1979;Snowdon和Powell,1982),但塔里木盆地下古生界显然不具备发育这种烃源岩条件。在相邻的45~86井区,甲烷碳同位素也较低(图2),有学者提出了低成熟生物气混入的模式[6],但从塔中地区油气藏地质特征来看,这种观点也很难成立。
除甲烷碳同位素指示气体的成熟度外,天然气组分特征也可用于判断成熟度。实验模拟证明,当天然气组分中C2/C3小于2,C2/iC4小于10时,天然气主要形成于Ro小于15%~16%的成熟演化范围,原油尚未发生有效的裂解作用,这些天然气为正常的原油伴生气;当C2/C3大于2,C2/iC4大于10时,这些天然气可通过原油的裂解过程形成,也可通过干酪根的热裂解作用生成。顺7井天然气组分C2/C3值为28,C2/iC4为1139,均说明顺7井天然气不属于原油伴生气,可能来自原油或干酪根的裂解。
表2 顺7井甲烷碳同位素换算得到的烃源岩镜质体反射率
图2 顺7井系天然气组分1/n与δ13Cn之间的关系
国内外学者的模拟实验均表明,天然气的甲烷碳同位素组成δ13C1主要受热演化程度控制,具有随着热演化程度增加逐渐变重的趋势。因此顺7井天然气来源排除了干酪根裂解的可能性。最新研究成果表明,除干酪根裂解气之外,塔里木盆地高成熟天然气还可能来自于分散可溶有机质裂解气和聚集可溶有机质裂解气(原油裂解气)[7]。聚集可溶有机质裂解气总体气体组分偏湿、甲烷碳同位素偏轻,实验模拟甲烷碳同位素最低达-50‰左右;分散可溶有机质裂解气则相对干燥系数较大,甲烷碳同位素相对偏重。刘文汇[7]等认为,和田河气田是典型的分散可溶有机质裂解气,其干燥系数基本大于095,天然气的δ13C1介于-378‰~-349‰之间。综合分析认为,顺7井天然气是原油裂解的结果。
甲烷及其同系物碳同位素组成受C-C键断裂过程的动力学分馏效应控制,同位素分馏不仅与成气母质的演化程度有关,而且与受热速率明显相关,达到相同演化程度的有机质,快速升温成气的同位素分馏往往小于慢速升温过程。近期研究表明在快速沉降条件下成气、成藏时形成的天然气碳同位素与母质的同位素分馏小,而在缓慢沉降条件下天然气与母质碳同位素分馏大。顺7井天然气的δ13C1仅为-51‰,远远低于塔里木下古生界两套烃源岩的有机碳同位素,说明顺7井的天然气是寒武系-中下奥陶统中的有机质在聚集成藏后,受长期的热演化作用裂解生成的气体。
2 原油地球化学特征
21 原油物理性质与族组成
顺7井原油呈淡**,有浓烈的硫化氢气味,密度介于07749~07983g/cm3(20℃),运动黏度为15~293mm2/s(30℃),含硫量为011%~017%,含蜡量为588%~915%,为低黏度、低硫、中含蜡量轻质油,与TZ86井区的原油较相似。
顺7井原油饱和烃含量高(>85%),芳烃含量低(<10%),非烃和沥青质含量低(表3),具有很高的饱芳比和非沥比值,表现出高成熟油特征。与中石化在卡1区块获得突破的中1井原油相比,顺7井原油的饱和烃含量明显高于中1井原油,而其芳烃的含量则明显低于中1井。
表3 顺7井和中1井原油族组成分析
采用传统的柱分离方法,轻质组分损失,闭合度小于70%。
图3 顺7井原油全油气相色谱图
22 原油全油色谱特征
顺7井全油色谱如图3所示,谱图基线平直,无鼓包,呈单峰前峰型分布。正构烷烃丰度为180μg/mg。从色谱参数来看,顺7井奥陶系原油正构烷烃碳数最高达nC32,CPI为103,为成熟原油, 为592,显示了以低碳数正构烷烃占优势的特点,表明原油的成熟度较高。原油的Pr/Ph值为116,显示出弱姥鲛烷优势,按Peters等建立的标准,Pr/Ph值在08~25范围内,不能作为烃源岩沉积环境的确切标志。
23 原油轻烃
庚烷值和异庚烷值是常用的轻烃成熟度参数。一般成熟原油的庚烷值和异庚烷值分别介于20%~30%和2%~3%区间,大于这一数值或低于这一数值的原油被认为是高成熟原油或低成熟原油。但是,这两项参数受生物降解作用的制约,即生物降解油的轻烃成熟度参数趋于偏小。顺7井原油的庚烷值在33%以上,异庚烷值为38%(图4),表明顺7井原油为过成熟油范畴。
图4 顺7井原油庚烷值和异庚烷值之间的关系
Bement等[8]在4个不同构造类型盆地中,采用5套不同时代生油岩的C7轻烃资料,利用镜质组反射率(Ro)作为地质温度计,对2,4-/2,3-DMP轻烃组分的温度参数进行了地质校正,求取生油层的最大埋深温度,建立了生油层最大埋深温度与2,4-/2,3-DMP的函数关系式,并得出该项轻烃温度参数不受盆地类型、热史(有效受热时间)、生油层时代、干酪根类型和岩性等因素影响的结论。
基于Bement的研究工作,Mango[9]推导出生油层最大埋藏温度(T)与2,4-/2,3-DMP的函数方程,即
T(℃)=140+15×ln(2,4-/2,3-DMP)。
运用Mango(1997)建立的上述函数方程,计算得到顺7井原油生成温度为135℃。
24 原油生物标志物
在甾萜烷生物标志物组成上(图5),顺7井原油由于成熟度较高,甾烷、藿烷系列基本裂解,在m/z 191质量色谱图中藿烷系列仅存在C30、C29藿烷,C30藿烷绝对含量仅为4×10-6,Tm化合物完全消失,Ts/(Ts+Tm)=1,表明原油的成熟度在13%左右[10],三环萜烷系列分布不完整,仅可见C19、C20、C23三环萜烷,且以C19三环萜烷为主峰。甾烷系列仅可检测出C21孕甾烷及少量的C27重排甾烷,C29规则甾烷隐约可见。
与卡1区块中1井奥陶系原油相比,顺7井原油与之存在很大区别,中1井原油具有较高的生物标志物绝对含量,C30藿烷绝对含量为137×10-6,C28甾烷含量低,重排甾烷含量高,C29藿烷含量高,伽马蜡烷含量低,三环萜烷以C23三环萜烷为主峰。
25 金刚烷类化合物特征
金刚烷化合物是具有类似金刚石结构的一类刚性聚合环状烃类化合物,是多环烃类化合物在高温热力作用下经强Lewis酸催化聚合反应的产物[11]。由于金刚烷具独特的分子结构,一旦形成,性质极为稳定,具有很强的抗热降解能力和抗生物降解能力。Dahl等[12]使用4-甲基双金刚烷+3-甲基双金刚烷绝对含量和C29ααα20R甾烷绝对含量来确定原油的裂解程度:未裂解原油中生物标志物含量较高,C29ααα20R甾烷一般大于10×10-6,4-甲基双金刚烷+3-甲基双金刚烷含量一般小于10×10-6,甚至小于5×10-6;当原油裂解程度在50%时,原油中生物标志物含量很低,C29ααα20R甾烷趋于零,4-甲基双金刚烷+3-甲基双金刚烷含量增大,为50×10-6;当原油裂解程度为85%时,4-甲基双金刚烷+3-甲基双金刚烷含量进一步增大,可达到170×10-6以上。
顺7井凝析油中富含双金刚烷,3-甲基+4-甲基双金刚烷含量可达73μg/g,基本检测不出C29 ααα20R甾烷。顺7井原油甲基双金刚烷含量远高于塔河九区奥陶系凝析油及高蜡原油中3-甲基+4-甲基双金刚烷含量[13],根据Dahl等提出的原油裂解定量评价模版,顺7井原油的裂解程度在70%左右。
图5 顺7井与中1井原油m/z 191、m/z 217质量色谱图
26 原油组分碳同位素
顺7井原油最为重要的特征是原油碳同位素偏重,全油碳同位素、饱和烃、芳烃、非烃与沥青质稳定碳同位素分别为-296‰、-303‰、-28‰、-296‰、-292‰(图6)。这一结果与塔里木盆地公认的寒武系生源的TD2井原油、乌鲁桥油苗馏分碳同位素值分布在相近的范围[14,15],而与中1井原油碳同位素比值明显不同,中1井原油及组分碳同位素分别为-3322‰、-3349‰、-3268‰、-3046‰与-3083‰。
图6 顺7井、中1井等原油组分碳同位素分布
3 结论
1)顺7井中下奥陶统鹰山组天然气为湿气,是有机成因的油型气。其组分碳同位素特征与塔中Ⅰ号坡折带的TZ45~86井区奥陶系天然气具有较强的相似性。根据天然气组成、同位素特征判断,顺7井鹰山组天然气来源为原油裂解的产物。
2)顺7井鹰山组原油的庚烷值和异庚烷值表明原油具有较高的成熟度。原油中双金刚烷和生物标志物的含量表明原油发生了严重的裂解,裂解程度达70%以上。由于原油成熟度较高,无法通过生物标志物判断油气来源,从原油及族组分的碳同位素值判断,顺7井原油来源于寒武系-中下奥陶统烃源岩。
参考文献
[1]周新源,王招明,杨海军,等塔中奥陶系大型凝析气田的勘探与发现[J]海相油气地质,2006,11(1):45~51
[2]孙龙德,李曰俊,江同文,等塔里木盆地塔中低凸起:一个典型的复式油气聚集区[J]地质科学,2007,42(3):602~620
[3]韩剑发,梅廉夫,杨海军,等塔中Ⅰ号坡折带礁滩复合体大型凝析气田成藏机制[J]新疆石油地质,2008,29(3):323 ~326
[4]武芳芳,朱光有,张水昌,等塔里木盆地塔中Ⅰ号断裂带西缘奥陶系油气成藏与主控因素研究[J]地质评论,2010,56(3):339~348
[5]韩剑发,梅廉夫,杨海军,等塔里木盆地塔中奥陶系天然气的非烃成因及其成藏意义[J]地学前缘,2009,16(1):314~325
[6]郭建军,陈践发,段文标,等塔中Ⅰ号构造带奥陶系天然气成因[J]天然气地球科学,2007,18(6):793~797
[7]刘文汇,张殿伟,高波,等地球化学示踪体系在海相层系新型气源识别中的应用——以塔里木盆地和田河气田为例[J]中国科学,2010,40(8):996~1004
[8]Bement W OThe temperature of oil generation as defined with C7 chemistry maturity parameter(2,4-DMP/2,3 -DMP ratio)[A]Grimalt J O,Dorronaoro COrganic Geochemistry:Developments and Applications to Energy,Climate,Environment and Human History[C]Donostian-San Sebastian:European Association of Organic Geochemists505~507
[9]Mango F DThe light hydrocarbon in petroleum :a critical review[J]Organic Geochemistry,1997,26(7/8):417~440
[10]Peter K E,Moldowan J MThe biomarker guide:interpreting molecular fossils in petroleum and ancient sediments[M]New Jersey:Prentice Hall1993
[11]Chen J H,Fu J M,Shen G Y,Liu D H,Zhang J JDiamondoid hydrocarbon ratios:novel maturity indices for highly mature crude oils[J]Organic Geochemistry,1996,25(3~4):
179~190
[12]Dahl J E,Moldowan J M,Peters K E,et alDiamondoid hydrocarons as indicators of natural oil cracking[J]Nature,1999,399(5):54~57
[13]马安来,张水昌,张大江,等塔里木盆地塔东2井稠油有机地球化学特征新疆石油地质,2005,26(2):
148~151
[14]马安来,金之钧,朱翠山,等塔河油田原油中金刚烷化合物绝对定量分析[J]石油学报,2009,30(2):214~218
[15]卢玉红,钱玲,张海祖,等塔里木盆地阿瓦提凹陷乌鲁桥油田地化特征及来源海相油气地质,2008,13(2):45~51
[16]马安来,金之钧,张水昌,等塔里木盆地寒武-奥陶系烃源岩的分子地球化学特征[J]地球化学,2006,35(6):593~601
以上就是关于石油期刊全部的内容,包括:石油期刊、我国研究现状、地球化学学科的性质等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【石油期刊】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态