双重差分法,英文名Differences-in-Differences,简称DID,又名倍差法,连玉君老师也称为倍分法。作为政策评估的利器,DID近几年就是学术界的明星,大家去翻国内外TOP期刊,基本上每期都会有DID的paper。
现在用个OLS、FE似乎根本就就拿不出手了,因为方法太简单可能会与期刊的“气质”不符,而DID听起来就很高端(虽然就是个交互项),能够满足作者和编辑们的虚荣心。
双重差分法又叫做倍差法,被用作政策效应评估,由于双重差分法的原理以及模型非常的容易理解。因此,受到了很多人的喜爱,双重差分法的本质就是面板数据固定效应,因此仅仅需要面板数据,如果只有截面数据的话,是不能够运用双重差分法的。
DID模型中包括个体与分组虚拟变量,如果个体会受到政策实施的影响,那么,分组虚拟变量将会取1,否则,分组虚拟变量就会取0,这样便可以反映出政策实施的净效应是什么样的,在双重差分法的模型中,还需要有至少达两年的'面板数据集,这样才能够正确的反映政策实施的效应。
双重差分法属于评估政策实施效应的一种非常有效的方法,被广泛的应用于微观经济学。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【did双重差分法】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态