力学专业大学排名

 2024-12-01 07:39:01  阅读 1006  评论 0

摘要:院校专业:基本学制:四年 | 招生对象: | 学历:中专 | 专业代码:080102培养目标培养目标培养目标:本专业培养适应我国社会主义现代化建设需要,德、智、体等方面全面发展,掌握 工程力学专业的基础理论以及计算技术与实验技能,能够在有关工程领域中从事与力学问题相 关的

院校专业:

基本学制:四年 | 招生对象: | 学历:中专 | 专业代码:080102

培养目标

力学专业大学排名

培养目标

培养目标:本专业培养适应我国社会主义现代化建设需要,德、智、体等方面全面发展,掌握 工程力学专业的基础理论以及计算技术与实验技能,能够在有关工程领域中从事与力学问题相 关的工程设计与分析、技术开发及技术管理工作,或继续攻读硕士、博士学位的工程力学及相关 专业的高层次研究人才或高校教师。

培养要求:本专业学生主要学习工程力学的基本理论和基本知识,接受必要的工程技能训 练,具有应用计算机和现代实验技术手段解决与力学有关的工程问题的基本能力。

毕业生应获得以下几方面的知识和能力:

1.具有良好的思想道德素质、强烈的民族自豪感和社会责任感,身心健康;

2.具有较好的人文、艺术和社会科学基础及较强的文字表达能力;

3.具有较扎实的数学和其他相关的自然科学以及工程技术的基础理论知识;

4.具有较系统的工程力学专业基础知识,较扎实的综合实验能力、工程实践能力和力学建 模的能力;

5.具有初步的解决与力学有关的工程技术问题的能力,了解学科前沿与发展趋势;

6.具有初步的与力学有关的工程计算与分析能力,以及大型工程软件的应用与开发的 能力;

7.具有自学能力、创新意识、团队精神和发展潜力;

8.具有外语听、说、读、写的综合运用能力及查阅外文科技文献的能力。

主干学科:力学。

核心知识领域:理论力学、材料力学、弹性力学、流体力学、实验力学、计算力学、振动力学。

主要实践性教学环节:课程设计、综合大作业或小论文,金工实习、与应用背景有关的专业认 识实习以及专业(生产)实习、毕业论文(设计)等。

主要专业实验:固体力学实验、流体力学实验、动力学实验。

修业年限:四年。

授予学位:工学学士。 0802 机械类

职业能力要求

职业能力要求

专业教学主要内容

专业教学主要内容

《理论力学》、《材料力学》、《结构力学》、《弹性力学》、《结构动力学》、《流体力学》、《有限元》、《张量分析》、《CAD/CAE软件应用》、《并行算法和程序设计》、《Auto CAD二、三维绘图》 部分高校按以下专业方向培养:工程结构分析。

专业(技能)方向

专业(技能)方向

工程、工业类企业:工程设计、技术昌滚则开发、工程计算、强度分析、结构工程、施工。

职业资格证书举例

职业资格证书举例

继续学习专业举例

就业方向

就业方向

工程力学这个专业给人的感觉就是你必须一直读下去:读完本科读硕士,读完硕士读博士,读了博士还有博士后。大家的认识基本就是:工程力学是纯理论性的东西,你学的目的就是教别人。在我没有进入这个专业之前,我也很迷茫,担心将来的就业情况。其实有这种感觉的人也不只是我一个,记得硕士生复试的时候,老师问完学生问题,然后学生自由提问的时候,大家最关心的问题就是:“工程力学的就业前景和待遇怎么样?”。尽管老师当时就指出,工程力学不仅仅是纯力学,还和工程问题相结合,将来的工作也还可以,但是大家都不太相信。

现在我也快毕业了,我就结合我们班的就业情况,说一说工程力学的就业情况吧。当然,由于我们学校本身备散是一所教育部下属的工科院校。目前已经就业的情况,工程力学专业的毕业生的去向有:

1 学校和科研单位

选择研究所的人占了很大一部分比例。大多数是航空集团下属的研究所。这种单位的工资水平不是很高,但是也是比较安稳的。工作地点主要在沈阳、西安、北京、上海。去学校当老师的相对少一些,主要是由于目前硕士生的扩招,学校对老师的学历要求也随之提高。

2 继续读博

这也是很多工程力学硕士生的选择。而且很大一部分选择了继续在南航读博,除了南航的工程力学实力比较雄厚原因之外耐棚,导师因素和本身对硕士课题比较了解也是一个原因。由于硕士期间对课题有一定的理解,有利于博士期间展开研究。这一部分人将来博士毕业基本上是去学校当老师。

3 国防单位

很大原因是南航在本科的时候招收了国防生,这些国防生读完了硕士就去部队工作了。

4 外企

一些人进了外企,比如三星、爱默生、福特等等。这些单位做的工作包括有限元计算,优化,软件开发等等。这种单位待遇相对好一些,当然劳动强度也高。

5 其他

除了以上这些去向,还有人选择考公务员,或者到和本科专业相关的单位,比如就有本科专业是土木工程的同学毕业后去建筑设计研究院。

对应职业(岗位)

对应职业(岗位)

其他信息:

最新的工程力学全国排名如下,其中

八星级:清华大学、北京大学

七星级:西安交通大学、哈尔滨工业大学

六星级:天津大学、郑州大学、上海交通大学、宁波大学、南京航空航天大学、大连理工大学、北京理工大学、北京航天航空大学

上海大学力学分数线

固体力学 固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。

固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。

自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。人所共知的山崩地裂、沧海桑田都与固体力学有关。现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计和计算都应用了固体力学的原理和计算方法。

由于工程范围的不断扩大和科学技术的迅速发展,固体力学也在发展,一方面要继承传统的有用的经典理论,另一方面为适应各们现代工程的特点而建立新的理论和方法。

固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。薄壁杆件是指长宽厚尺寸都不是同量级的固体物件。在飞行器、船舶和建筑等工程结构中都广泛采用了薄壁杆件。

固体力学的发展历史

萌芽时期 远在公元前二千多年前,中国和世界其他文明古国就开始建造有力学思想的建筑物、简单的车船和狩猎工具等。中国在隋开皇中期(公元591~599年)建造的赵州石拱桥,已蕴含了近代杆、板、壳体设计的一些基本思想。

随着实践经宴宽验的积累和铅则工艺精度的提高,人类在房屋建筑、桥梁和船舶建造方面都不断取得辉煌的成就,但早期的关于强度计算或经验估算等方面的许多资料并没有流传下来。尽管如此,这些成就还是为较早发展晌激亮起来的固体力学理论,特别是为后来划归材料力学和结构力学那些理论奠定了基础。

发展时期 实践经验的积累和17世纪物理学的成就,为固体力学理论的发展准备了条件。在18世纪,制造大型机器、建造大型桥梁和大型厂房这些社会需要,成为固体力学发展的推动力。

这期间,固体力学理论的发展也经历了四个阶段:基本概念形成的阶段;解决特殊问题的阶段;建立一般理论、原理、方法、数学方程的阶段;探讨复杂问题的阶段。在这一时期,固体力学基本上是沿着研究弹性规律和研究塑性规律,这样两条平行的道路发展的,而弹性规律的研究开始较早。

弹性固体的力学理论是在实践的基础上于17世纪发展起来的。英国的胡克于1678年提出:物体的变形与所受外载荷成正比,后称为胡克定律;瑞士的雅各布第一·伯努利在17世纪末提出关于弹性杆的挠度曲线的概念;而丹尼尔第一·伯努利于18世纪中期,首先导出棱柱杆侧向振动的微分方程;瑞士的欧拉于1744年建立了受压柱体失稳临界值的公式,又于1757年建立了柱体受压的微分方程,从而成为第一个研究稳定性问题的学者;法国的库仑在1773年提出了材料强度理论,他还在1784年研究了扭转问题并提出剪切的概念。这些研究成果为深入研究弹性固体的力学理论奠定了基础。

法国的纳维于1820年研究了薄板弯曲问题,并于次年发表了弹性力学的基本方程;法国的柯西于1822年给出应力和应变的严格定义,并于次年导出矩形六面体微元的平衡微分方程。柯西提出的应力和应变概念,对后来数学弹性理论,乃至整个固体力学的发展产生了深远的影响。

法国的泊阿松于1829年得出了受横向载荷平板的挠度方程;1855年,法国的圣维南用半逆解法解出了柱体扭转和弯曲问题,并提出了有名的圣维南原理;随后,德国的诺伊曼建立了三维弹性理论,并建立了研究圆轴纵向振动的较完善的方法;德国的基尔霍夫提出梁的平截面假设和板壳的直法线假设,他还建立了板壳的准确边界条件并导出了平板弯曲方程;英国的麦克斯韦在19世纪50年代,发展了光测弹性的应力分析技术后,又于1864年对只有两个力的简单情况提出了功的互等定理,随后,意大利的贝蒂于1872年对该定理加以普遍证明;意大利的卡斯蒂利亚诺于1873年提出了卡氏第一和卡氏第二定理;德国的恩盖塞于1884年提出了余能的概念。

德国的普朗特于1903年提出了解扭转问题的薄膜比拟法;铁木辛柯在20世纪初,用能量原理解决了许多杆板、壳的稳定性问题;匈牙利的卡门首先建立了弹性平板非线性的基本微分方程,为以后研究非线性问题开辟了道路。

苏联的穆斯赫利什维利于1933年发表了弹性力学复变函数方法;美国的唐奈于同一年研究了圆柱形壳在扭力作用下的稳定性问题,并在后来建立了唐奈方程;弗吕格于1932年和1934年发表了圆柱形薄壳的稳定性和弯曲的研究成果;苏联的符拉索夫在1940年前后建立了薄壁杆、折板系、扁壳等二维结构的一般理论。

在飞行器、舰艇、原子反应堆和大型建筑等结构的高精度要求下,有很多学者参加了力学研究工作,并解决了大量复杂问题。此外,弹性固体的力学理论还不断渗透到其他领域,如用于纺织纤维、人体骨骼、心脏、血管等方面的研究。

1773年库仑提出土的屈服条件,这是人类定量研究塑性问题的开端。1864年特雷斯卡在对金属材料研究的基础上,提出了最大剪应力屈服条件,它和后来德国的光泽斯于1913年提出的最大形变比能屈服条件,是塑性理论中两个最重要的屈服条件。19世纪60年代末、70年代初,圣维南提出塑性理论的基本假设,并建立了它的基本方程,他还解决了一些简单的塑性变形问题。

现代固体力学时期 指的是第二次世界大战以后的时期,这个时期固体力学的发展有两个特征:

一是有限元法和电子计算机在固体力学中得到广泛应用;二是出现了两个新的分支——断裂力学和复合材料力学。

特纳等人于1956年提出有限元法的概念后,有限元法发展很快,在固体力学中大量应用,解决了很多复杂的问题。

结构物体总是存在裂纹,这促使人们去探讨裂纹尖端的应力和应变场以及裂纹的扩展规律。早在20年代,格里菲思首先提出了玻璃的实际强度取决于裂纹的扩展应力这一重要观点。欧文于1957年提出应力强度因子及其临界值概念,用以判别裂纹的扩展,从此诞生了断裂力学。

纤维增强复合材料力学发端于20世纪50年代。复合材料力学研究有宏观、细观和微观三个方向。固体力学各分支所形成的基本概念和力学理论一般仍能应用于复合材料,只是增加了一些新的力学内容,如要考虑非均匀性、各向异性、层间剥离等。复合材料力学是年轻学科,但发展迅速,它解决了大量传统材料难于胜任的结构问题。

固体力学的分支学科

材料力学是固体力学中最早发展起来的一个分支,它研究材料在外力作用下的力学性能、变形状态和破坏规律,为工程设计中选用材料和选择构件尺寸提供依据。它研究的对象主要是杆件,包括直杆、曲杆(如挂钩、拱)和薄壁杆等,但也涉及一些简单的板壳问题。在固体力学各分支中,材料力学的分析和计算方法一般说来最为简单,但材料力学对于其他分支学科的发展起着启蒙和奠基的作用。

弹性力学又称弹性理论,是研究弹性物体在外力作用下的应力场、应变场以及有关的规律。弹性力学首先假设所研究的物体是理想的弹性体,即物体承受外力后发生变形,并且其内部各点的应力和应变之间是一一对应的,外力除去后,物体恢复到原有形态,而不遗留任何痕迹。

弹性力学也可分为数学弹性力学和应用弹性力学。前者是经典的精确理论;后者是在前者各种假设的基础上,根据实际应用的需要,再加上一些补充的简化假设而形成的应用性很强的理论。从数学上看,应用弹性力学粗糙一些;但从应用的角度看,它的方程和计算公式比较简单,并且能满足很多结构设计的要求。

塑性力学又称塑性理论,是研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律。物体受到足够大外力的作用后,它的一部或全部变形会超出弹性范围而进入塑性状态,外力卸除后,变形的一部分或全部并不消失,物体不能完全恢复到原有的形态。

一般地说,在原来物体形状突变的地方、集中力作用点附近、裂纹尖端附近,都容易产生塑性变形。塑性力学的研究方法同弹性力学一样,也从进行微元体的分析入手。塑性力学也分为数学塑性力学和应用塑性力学,其含义同弹性力学的分类是一样的。

稳定性理论是研究细长杆、杆系结构、薄板壳以及它们的组合体在各种形式的压力作用下产生变形,以至丧失原有平衡状态和承载能力的问题。弹性结构丧失稳定性,是指结构受压力后由和原来外形相近似的稳定平衡形式向新的平衡形式急剧转变或者丧失承载能力,对应的压力载荷即是所谓的临界载荷。

研究稳定性问题的方法一般分为静力学法、动力学法和能量法。静力学法主要用于研究挠度微分方程的积分;动力学法主要用于研究外压力增加时结构系统的自由振动;能量法则以最小势能原理为基础进行研究,它在工程结构,特别是复杂工程结构的研究中被广泛采用。

在工程结构设计中,要进行结构的静力计算、动力计算、稳定性计算和断裂计算等。结构力学就是研究工程结构承受和传递外力的能力,进而从力学的角度研制新型结构,以使结构达到强度高、刚度大、重量轻和经济效益好的综合要求。

振动理论是研究物体的周期性运动或某种随机的规律的学科。最简单、最基本的振动是机械振动,即物体机械运动的周期性变化。振动会使物体变形、磨损或破坏,会使精密仪裹精度降低。但是又可利用振动特性造福于人类。例如机械式钟表、各种乐器、振动传输机械等都是利用振动特性的制品。因此,限制振动的有害方面和利用其有利方面,是研究振动理论的目的。

机械振动有多种分类法,最基本的分为自由振动、受迫振动和自激振动。自由振动是由外界的初干扰引起的;受迫振动是在经常性动载荷(特别是周期性动载荷)作用下的振动;自激振动是振动系统在受系统振动控制的载荷作用下的振动。在工程实践中,对振动系统主要研究它的振型、振幅、固有频率。研究转动系统的转子动力学也属于振动理论的范畴。

断裂力学又称断裂理论,研究工程结构裂纹尖端的应力场和应变场,并由此分析裂纹扩展的条件和规律。它是固体力学最新发展起来的一个分支。

许多固体都含有裂纹,即使没有宏观裂纹,物体内部的微观缺陷(如微孔、晶界、位错、夹杂物等)也会在载荷作用、腐蚀性介质作用,特别是交变载荷作用下,发展成为宏观裂纹。所以,断裂理论也可说是裂纹理论,它所提出的断裂韧度和裂纹扩展速率等,都是预测裂纹的临界尺寸和估算构件寿命的重要指标,在工程结构上得到广泛应用。研究裂纹扩展规律,建立断裂判据,控制和防止断裂破坏是研究断裂力学的目的。

复合材料力学是研究现代复合材料(主要是纤维增强复合材料)构件,在各种外力作用和不同支持条件下的力学性能、变形规律和设计准则,并进而研究材料设计、结构设计和优化设计等。它是20世纪50年代发展起来的固体力学的一个新分支。

复合材料力学的研究必须考虑复合材料的各向异性性质和非均匀性。复合材料的力学性能决定于各组成材料的力学性能以及它们的形状、含量、分布状况以及铺层厚度、方向和顺序等多种因素。

纤维增强复合材料的比强度(强度/密度)和比刚度(刚度/密度)均高于传统的金属材料,而且其力学性能可设计,此外还具有良好的耐高温性能、抗疲劳性能、减振性能以及容易加工成型等一系列优点。这些优点都是力学工作者所追求和研究的。复合材料力学的触角已伸入到材料设计、材料制作工艺过程和结构设计中,并在很多方面得到了广泛的应用。

2022年上海大学力学专业统考拟招生38人,较2021年缩招1人;力学与工戚历程科学学院招收的力学专业研究高顷搜方向主要为:一般力学与力学基础、固体力学、流体力学、工程力学;材料基因组工程研究院的力学专业研究方向分为力学—(电)化学耦合理论及其在电池和腐蚀中的应用、力学信息学、材料的乎碰力学性能。2022年复试分数线:260/35/53;

2021年复试分数线:253/34/51,力学与工程科学学院:统考报考人数为152,统考录取60人,报录比为253:

1、。

以上就是关于力学专业大学排名全部的内容,包括:力学专业大学排名、【固体力学调剂】力学的师兄师姐帮个忙、上海大学力学分数线等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【力学专业大学排名】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/403088.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0445秒, 内存占用2.01 MB, 访问数据库23次

陕ICP备14005772号-15