收敛半径的求法

 2024-12-01 05:12:01  阅读 373  评论 0

摘要:根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:是正实数时,R=1/;= 0时,R=+∞;=+∞时,R=0。根据根值审敛法,则有柯西-阿达马公式。或者,复分析中的收敛半径将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。 扩展资料收敛圆上的敛散性如

根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:ρ是正实数时,R=1/ρ;ρ= 0时,R=+∞;ρ=+∞时,R=0。根据根值审敛法,则有柯西-阿达马公式。或者,复分析中的收敛半径将一个收敛半径是正数的幂级数的变量取为复数,就可以定义一个全纯函数。

扩展资料

收敛圆上的敛散性

收敛半径的求法

如果幂级数在a附近可展,并且收敛半径为r,那么所有满足|za|=r的点的集合(收敛圆盘的边界)是一个圆,称为收敛圆。幂级数在收敛圆上可能收敛也可能发散。即使幂级数在收敛圆上收敛,也不一定绝对收敛。

例1:幂级数的收敛半径是1并在整个收敛圆上收敛。设h(z)是这个级数对应的函数,那么h(z)是例2中的g(z)除以z后的导数。h(z)是双对数函数。

例2:幂级数的收敛半径是1并在整个收敛圆上一致收敛,但是并不在收敛圆上绝对收敛。

收敛半径一般的推导

用第n+1项除以第n项,整个的绝对值,小于1,解出x(或x-a这决定于你级数的展开)的绝对值小于的.值就是收敛半径收敛域就是求使其收敛的所有的点构成的区域。

比如收敛半径是r,求收敛域,就是判断x(或x-a)的对值r时必发散,所以只要判断=r时的两个点是否收敛即可,如过有收敛就把该点并到

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【收敛半径的求法】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/401605.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.1684秒, 内存占用1.97 MB, 访问数据库23次

陕ICP备14005772号-15