在前面校小编为福建专升本考生们汇总的是2019年福建专升本高等数学考试大纲(一)的部分,现在为大家汇总的是2019年福建专升本高等数学考试大纲(二),一起来看看吧。
第四章 一元函数积分法
(一)考核知识点
1、原函数的定义。
2、不定积分的定义。
3、原函数与不定积分的几何意义。
4、不定积分的基本性质。
5、基本积分公式。
6、不定积分的分项积分法则。
7、换元积分法则。
8、分部积分法则。
9、简单有理函数和可化为简单有理函数的积分法。
10、定积分的定义及其存在定理。
11、定积分的基本性质——对区间的可加性、线性性质、估值不等式。
12、定积分的中值定理(包括积分均值)。
13、微积分学基本定理。
14、牛顿——莱布尼兹公式。
15、定积分的换元积分法则。
16、定积分的分部积分法则。
17、两种广义积分——无界函数的广义积分及积分区间为无穷区间的广义积分。
18、定积分的应用——几何应用和物理应用。
(二)考试要求
与加法有逆运算减法、乘法有逆运算除法一样,求导法也有逆运算,这就是不定积分法。与导数概念的产生一样,定积分概念也是由解决实际问题的需要而产生的。本章内容丰富,概念性强。
本章总的要求是:深刻理解原函数与不定积分的定义;理解不定积分的基本性质;牢固掌握基本积分公式;熟练掌握并能灵活运用分项积分法则、换元积分法则与分部积分法则; 掌握简单有理函数和可化为简单有理函数的积分法。深刻理解定积分的定义及其存在定理;理解定积分的基本性质和定积分的中值定理;深刻理解并熟练掌握微积分学基本定理;理解并掌握牛顿——莱布尼兹公式;熟练掌握定积分的换元积分法则和分部积分法则;理解两种广义积分的概念并掌握它们的求法;掌握定积分在几何和物理方面的应用。
本章考试的重点是:原函数与不定积分概念;基本积分公式;换元积分法则与分部积分法则;定积分的概念;定积分的中值定理;微积分学基本定理;牛顿——莱布尼兹公式;定积分的换元积分法则,定积分的几何应用。
第五章 空间解析几何
(一)考核知识点
1、空间直角坐标系、两点之间的距离公式。
2、向量概念、方向余弦与方向数。
3、向量的运算、向量平行垂直的条件。
4、平面方程。
5、空间直线方程。
6、平面、直线间的平行垂直关系。
7、曲面与空间曲线方程。
8、二次曲面简介。
(二)考试要求
与平面解析几何一样,空间解析几何研究的两个基本问题是:
(1)已知构成曲面和曲线的几何条件,建立它们的方程;(2)已知曲面或曲线的方程,研究它们的图形和特点。
本章总的要求是:理解空间直角坐标系;掌握两点之间的距离公式、向量概念、向量的运算、向量平行垂直的条件、方向余弦与方向数。平面与空间直线的方程和它们之间的平行及垂直关系;掌握曲面与空间曲线的方程;掌握常用的几个二次曲面的标准方程和它们的图形。
本章考试的重点是:向量概念、向量的运算、向量平行及垂直的条件;平面的方程;直线的方程;球面方程;母线平行于坐标轴的柱面方程。
第八章 常微分方程
(一)考核知识点
1、微分方程的一般概念——微分方程的定义、阶、解、通解、初始条件、特解。
2、可分离变量的微分方程。
3、齐次方程。
4、一阶线性方程。
5、可降阶的三种特殊类型的方程:
6、二阶线性微分方程解的结构。
7、二阶常系数齐次线性微分方程。
8、二阶常系数非齐次线性微分方程。
9、用微分方程解决实际问题。
(二)考试要求
微分方程的起源与研究几何、力学、物理等方面的问题有着密切的联系,它的理论与方法几乎是与微积分学同时发展起来的,微分方程有着广泛的应用。到现代,它已经渗透到自然科学、工程技术、生物医学等各个领域。
本章总的要求是:理解微分方程的一般概念;熟练掌握可分离变量的方程、齐次方程、一阶线性方程的解法;掌握可降阶三种特殊类型的微分方程的解法;深刻理解二阶线性微分方程解的结构;熟练掌握二阶常系数齐次与非齐次线性微分方程的解法;掌握用微分方程解决实际问题的步骤。
本章考试的重点是:微分方程的一般概念;可分离变量的微分方程;一阶线性微分方程;二阶常系数线性齐次微分方程的解法;二阶常系数非齐次线性微分方程的特解的求法;识别微分方程的各种类型。
以上内容为2019年福建专升本高等数学考试大纲(二),希望童鞋们根据大纲内容好好复习,最后祝各位考生都能取得优异成绩。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【2019年福建专升本高等数学考试大纲(二)】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态