初中函数的学习方法

 2024-11-30 00:18:02  阅读 990  评论 0

摘要:函数是初中阶段比较难学的知识,因此有很多初中生表示不知道函数应该怎样学,掌握哪些技巧,感觉无从下手。其实学习任何东西都是需要掌握方法和技巧的,只有这样才能够有效的提高学习成绩。下面咱们掌门小编就给大家带来初中函数的学习方法,一起来看看吧。初中函数的学习方法

函数是初中阶段比较难学的知识,因此有很多初中生表示不知道函数应该怎样学,掌握哪些技巧,感觉无从下手。其实学习任何东西都是需要掌握方法和技巧的,只有这样才能够有效的提高学习成绩。下面咱们掌门小编就给大家带来初中函数的学习方法,一起来看看吧。

初中函数的学习方法

注重“类比”思想

初中函数的学习方法

不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。

注重“数形结合”思想

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的“数形结合”。函数图象就是将变化抽象的函数“拍照”下来研究的有效工具,函数教学离不开函数图象的研究。

注重自变量的取值范围

自变量的取值范围,是解函数问题的难点和考点。正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。

注重实际应用问题

学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。学生在学习函数的时候一定要牢牢把握函数的概念,所谓函数就是两个变量之间的关系,当一个量发生变化时另一个量也随之发生变化,一个量的变化引起了领一个量的变化。学生可以理解为“先变化的量叫做自变量,后变化的量叫做因变量”学生在理解时可以用“树和影子”的关系来理解函数中两个变量之间的关系。即树的运动,引起了影子的运动。“树”相当于自变量“影子”相当于因变量。通过简单的生活实例,学生可以更好的理解函数的概念及变量之间的关系。

熟记知识点

应该熟悉每一章节的知识点,熟练背诵记忆定义、定理、公式、运算法则等基本知识。很多同学选择填空题做错,主要是因为基础知识不牢固。函数的性质是学生学习函数的重要工具,学生只有在正确理解函数性质的基础上再能才能解决函数的综合性题目。所以说正确理解函数的性质是学习初中函数的关键。

以上就是由小编为大家带来的关于初中函数的学习方法,想要学好函数就要正确理解函数的性质,同时也要学会利用函数的性质来解决一些实际的问题,这是初中学习函数的关键所在。

八年级数学函数怎么学

八年级的函数说难不难,说简单也不简单,关键是要练。要记。八年级数学函数怎么学呢?下面我整理了八年级数学函数学习方法,供你参考。

八年级数学函数学习方法如下

一、理解二次函数的内涵及本质.

二次函数y=ax2 +bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形.

二、熟悉几个特殊型二次函数的图象及性质.

1、通过描点,观察y=ax2、y=ax2+k、y=a(x+h)2图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式.

2、理解图象的平移口诀“加上减下,加左减右”.

y=ax2→y=a(x+h)2+k “加上减下”是针对k而言的,“加左减右”是针对h而言的.

总之,如果两个二次函数的二次项系数相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般形式,应先化为顶点式再平移.

3、通过描点画图、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征

4、在熟悉函数图象的基础上,通过观察、分析抛物线的特征,来理解二次函数的增减性、极值等性质利用图象来判别二次函数的系数a、b、c、△以及由系数组成的代数式的符号等问题.

三、要充分利用抛物线“顶点”的作用.

1、要能准确灵活地求出“顶点”.形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点.

2、理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k反之,若对称轴为x=m,y最值=n,则顶点为(m,n)理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果.

3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象.

四、理解掌握抛物线与坐标轴交点的求法.

一般地,点的坐标由横坐标和纵坐标组成,我们在求抛物线与坐标轴的交点时,可优先确定其中一个坐标,再利用解析式求出另一个坐标.如果方程无实数根,则说明抛物线与x轴无交点.

从以上求交点的过程可以看出,求交点的实质就是解方程,而且与方程的根的判别式联系起来,利用根的判别式判定抛物线与x轴的交点个数.答案补充 学理科东西学会求本质 做类推

二次函数都是抛物线函数(它的函数轨迹就像平推出去一个球的运动轨迹,当然这个不重要) 因此 把握它的函数图像就能把握二次函数

在函数图像中 注意几点(标准式y=ax^2+bx+c,且a不等于0):

1、开口方向与二次项系数a有关 正 则开口向上 反之反是。

2、必有一个极值点,也是最值点。如果开口向上,很容易想象这个极值点应该是最小点 反之反是。且极值点的横坐标为-b/2a。极值点很容易出应用题。

3、不一定和x轴有交点。当根的判定式Δ=b^2-4ac<0时,没有交点,也就是ax^2+bx+c=0这个方程式“没有实数解”(不能说没有解!具体你上高中就知道了)如果 Δ=0 那么正好有一个交点,也就是我们说的x轴与函数图像向切。对应的方程有唯一实数解。Δ>0时,有两个交点,对应方程有2个实数解。

4、不等式。如果你把上面3点搞清楚了 参考函数图像 不等式你就一定会解了

初二数学函数学习口诀

正比例函数的鉴别

判断正比例函数,检验当分两步走。

一量表示另一量,是与否。

若有还要看取值,全体实数都要有。

正比例函数是否,辨别需分两步走。

一量表示另一量,有没有。

若有再去看取值,全体实数都需要。

区分正比例函数,衡量可分两步走。

正比例函数的图象与性质

正比函数图直线,经过和原点。

K正一三负二四,变化趋势记心间。

K正左低右边高,同大同小向爬山。

K负左高右边低,一大另小下山峦。

一次函数

一次函数图直线,经过点。

K正左低右边高,越走越高向爬山。

K负左高右边低,越来越低很明显。

K称斜率b截距,截距为零变正函。

反比例函数

反比函数双曲线,经过点。

K正一三负二四,两轴是它渐近线。

K正左高右边低,一三象限滑下山。

K负左低右边高,二四象限如爬山。

二次函数

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

A定开口及大小,开口向上是正数。

绝对值大开口小,开口向下A负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

初中数学函数怎么学习?

初中函数学习需要把一次函数、正反比例函数等以前学过的相关函数的基础:明确:一次函数y=ax+b,反比例函数它们的图象和各系数(包括a,b,k)之间的关系如何。

在除以学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。

另外需要学会表示点,学会利用横纵坐标来表示点的位置和特点。学会表示点的位置,点的移动和点的特性。

函数的三种表示法

1.解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

2.列表法:用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。

3.图像法:把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

初中数学函数怎么学 最简单方法有哪些

数学函数部分是很简单的,下面我就大家整理一下初中数学知识点:初中数学函数怎么学,仅供参考。

首先就是熟悉坐标系

在除以学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。

理解二次函数的内涵及本质

二次函数 y=ax2 +bx+c(a≠0,a、b、c是常数)中含有两个变量x、y,我们只要先确定其中一个变量,就可利用解析式求出另一个变量,即得到一组解而一组解就是一个点的坐标,实际上二次函数的图象就是由无数个这样的点构成的图形.

数形结合很重要

我们知道函数说白了其实就是代数和几何的结合,函数既可以用画面的图形来表示出来,也可以用代数的文字所表达出来,它像一幅画,也像一首诗。

所以,同学们要具备两方面的思维,一个是如何在纸面上通过函数的系数、字母、数字等等关系,了解函数的开口方向、对称轴与x轴交点等等,又可以通过图像了解还是函数位置以及与其他函数图像的关系。

要充分利用抛物线“顶点”的作用

1、要能准确灵活地求出“顶点”.形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点.

2、理解顶点、对称轴、函数最值三者的关系.若顶点为(-h,k),则对称轴为x=-h,y最大(小)=k反之,若对称轴为x=m,y最值=n,则顶点为(m,n)理解它们之间的关系,在分析、解决问题时,可达到举一反三的效果.

3、利用顶点画草图.在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象.

学习简单的函数

学习简单的 函数 ,完全掌握简单的函数,一次函数和二次函数。将一次函数和一元一次方程对应,将二次函数和一元二次方程对应,学会求点求数值。

以上就是我为大家整理的 初中数学知识点:初中数学函数怎么学。

请教初中函数的学习方法!

一、正确理解函数的概念,会利用解析式和图像两种方法理解函数。

学生在学习函数的时候一定要牢牢把握函数的概念,所谓函数就是两个变量之间的关系,当一个量发生变化时另一个量也随之发生变化,一个量的变化引起了领一个量的变化。学生可以理解为“先变化的量叫做自变量,后变化的量叫做因变量”学生在理解时可以用“树和影子”的关系来理解函数中两个变量之间的关系。即树的运动,引起了影子的运动。“树”相当于自变量“影子”相当于因变量。通过简单的生活实例,学生可以更好的理解函数的概念及变量之间的关系。

二、正确理解函数的性质,会利用函数的性质解决一些实际问题。

函数的性质是学生学习函数的重要工具,学生只有在正确理解函数性质的基础上再能才能解决函数的综合性题目。所以说正确理解函数的性质是学习初中函数的关键。

三、正确理解函数中的数形结合,函数值与自变量的关系。

四、会利用函数的知识解方程(组)、不等式(组)。

五、会利用函数知识解决生活中的实际问题。如运费,交水费,电费等等。

六、正确理解函数 。

初二函数怎么学最简单方法有哪些

很多学生觉得学习函数比较难,因为首先没有弄懂函数的概念。函数指在某一个变化过程中,存在两个变量,一个变量随另一个变量的变化而变化。比如,温度随时间的变化而变化。又比如,圆的面积随半径的变化而变化,所以,这样的变化过程就形成了函数。为了帮助函数学不好的学生,本文整理了初二函数学习方法,供参考!

学习初二函数最简单方法

画好函数图像,我们根据图象所在的象限,从左到右观察图像的走向(或发展趋势),观察图像是升高,或降低。一般来说,图象升高,y随x的增大而增大,图象降低,y随x的减小而减小。

学习数学的每一个知识点,我们一般都是必须先掌握概念(定义),再从性质(定理)去学习,所以学生在学习过程中,要善于去归纳,总结。学会画思维导图。提升自己知识点的融汇贯通。才能灵活运用。

初二函数学习技巧

(1)要学好函数,首先要能透彻理解函数的定义

理解函数定义,要用具体的函数帮助理解。

比如:y=2x, S=100t, y=3x+1等。

通过这些具体函数,体会两个变量之间的关系。

(2)通过做题,加深对函数的理解

光看函数的定义,只能理解函数的本质含义。

用函数的知识解决问题的能力,只有通过训练才能获得。

(3)培养数学动态变化思维

学习函数最重要的是就是有动态思维能力,在解题的过程中明白动的变化和不动的特殊点的理解和计算方法。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【初中函数的学习方法】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/384264.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0450秒, 内存占用2.01 MB, 访问数据库23次

陕ICP备14005772号-15