数学一是报考理工科的学生考,考试内容包括高等数学,线性代数和概率论与数理统计,考试的内容是最多的。考研数学一考试内容分为三个部分:高等裂橡数学部分,概率论与数理统计部分,线性代数部分
高等数学部分学习内容有:函数,极限,连续,一元函数微积分学,向量代数与空间解析几何,多元函数的微积分宏烂学,无穷级数,常微分方程
线性代数部分学习内容有:行列式,矩阵,向量,线性方程组,矩阵的特征值和特征向量,二次型
概率论与数理统计部分学习内容有:随机事件和概率,随机变量及其概率分布,维随机变量及其概率分布,随机变量的数字特征,大数定律和中心极限定理,数理统计的基本概念,参数估计,假设检验。
考试分数试卷满分为150分,考试时间为180分钟。考试答题方式为闭卷、笔试。考试内容分数占比为高等数学 56%;线性代数 22%;概率论与数理统计22%。
考试题型为单选题 8小题,每题4分,共32分;填空题 6小题,每题4分,共24分;解答题(包括证明题) 9小题,共94分
如有变蔽源漏化,请以中国研究生招生信息网的通告为准。
一、考基础知识,基本技能,纲本意识强。今年中考题将一如既往地采用基本题型微量的几何作图题,分值的分配大致是:代数占65%,几何点35%,其中填空选择题占70分上下,初三内容为考查的重难点,试题的覆盖率约占全卷的55%。日后,发给初三毕业班同学人手一册的《考纲说明》将有更详尽的标注,试题一般都是由易到难地编排。
无论哪种题型(大题)的中后期总要设计一两道尾巴高翘的“断梁”,下一大题又将重新从易到难,尤其是卷末的综合压轴题,激流险滩之中将呈现一派雄浑格调,是制卷者匠心独具的盯没“戏眼”。所以整个试卷若是一条路,会有五虎挡道,若是一域水,会波澜起伏。但无论是对知识或能力的考查,都会较多地选择课本题,或根据课本题改编手圆,紧扣教材,呈现考试的公平性。
二、考数学思想和方法,体现数学素养。
三、考查数学思想。重凯薯纳点考查四种数学思想:方程思想,分类讨论,数形结合及化归思想。由于函数是高中教学内容的核心,从初高中衔接角度考虑,会将函数作为重点内容考查,而且函数思想脉络中蕴含着极为丰富的数学思想内容,因此历来是各省中考题中“兵家必争之地”。
从三方面做好最后阶段的复习
1理顺知识、查缺补漏。中考数学试题有60%—70%的题目是基础题,这些题目考查的内容一般是课本中基本概念、公式、法则、性质定理及基本运算、基本推理、基本作图、基本方法的应用及小综合应用,而且比较简单。同学们应对每一单元所包含的数学知识和数学思想方法形成清晰的网络,明确考点和常见题型。对模糊的知识点及时看书巩固,对掌握不熟练或易错的题型有针对性地重点练习。尤其是学习基础较差的同学,这一环节尤为重要,要争取基础题目不失分。这一环节可参考应试指南进行,对考点和题型进行了详细的归纳、总结、分析。
2复习旧题、反思提高。数学知识和解题方法的应用是非常灵活的,在解题时如何运用数学知识、选取恰当的解题方法是同学们比较头疼的一个问题。有时一个题目会做了,但一换问法又不会了,原因是对题目没有理解透。实际上数学的学习和文科一样同样需要“积累”。在这么短的时间里再去做大量的题目,去钻难题,时间已经不允许,效果也不好。同学们可将以前做错或不会做的题目找出来再练一遍,在练的过程中注重反思解题的思维过程、探索过程和自己出错的原因、思维的断层。
3模拟练习,适当调整。在最后的十天中,找2到3套去年的中考试题,模拟中考场景,进行适应性训练是很有必要的。从时间的安排、遇到难题时心态的调整,到答题的技巧等,通过模拟练习及时自我总结,适当调整,到中考时就不会那么紧张,也会应付自如了。
考试中应注意的几个问题
1注意审题。因审题不清出现错误是中考失分的一大因素。数学题目的条件是非常严格的,若审题不清可能会出现漏解或错解。有的题目中有隐含条件,需要认真审题才能体会到,找到问题的突破口。还要注意看清答题要求,如近似数的精确度,只要求回答结果还是要给出证明等等,以免答非所问或画蛇添足。
2注意由实际问题向数学模型的转化。中考数学试题中联系实际的问题约占十个左右,主要考查学生灵活运用知识解决实际问题的能力以及创新能力。对于此类题目首先要明确它要考查的知识点,需要调用哪些数学知识,再依据条件转化出数学模型,画出相应的图形。在解决问题的过程中还要注意所得答案要符合实际情况。
3答题过程要规范,书写要整洁。这样便于老师阅卷,减少不必要的失分,也便于自己检查。中考阅卷是按步骤给分的,即使最后的结果错了,也会有步骤分,只有书写规范了才便于老师找到得分点。
4合理安排时间。在中考中遇到不会做的题或一时想不出来的题目是很正常的,千万不要在一道题目上花费太多的时间,这样会影响后面试题的解答。最好的方法是先把熟悉的、会做的题目做完,再回过头来一一化解“拦路虎”。中考数学试题阅读量较大,若不能合理安排时间,很可能会做不完。
5保持良好的心态,积极应考。良好的心态对理科考试尤为重要,也是思路顺畅的前提。过度紧张会导致思路不清,计算错误或做不出题。学会自我调控情绪,培养自信心,以积极的心态面对中考
大学高数考试一般以下的要点:
求极限;求导数;求函数极值,最大值版;函数权的微分,不定积分,定积分。
大学高等数学是每位大学生都应该掌握的一门学科,不管是理科生还是文科生。因为数学是一门古老而又十分重要的自然学科。高等数学建立在初等数学基础槐御液之上,结构严谨,对于学生的逻辑思维以及运算能力有较高的要求,是各理工学科的基础。
扩展铅物资料:
大学高等数学作为一门科学,高等数学有其固有的特点。这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律。才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,拆誉遵循思维的规律。
学好了数学,也就为其他学科的学习打下了坚实的基础。高等数学是解决其他相关问题的良好工具,而其中函数极限和微积分又是贯穿于其中的重要部分,是学习的核心。
一、考试性质
天津市普通高校“高职升本科”招生考试是由合格的高职高专毕业生参加的选拔性考试。
二、考试能力要求
高等数学考试是对考生思维能力、运算能力和实践能力的考闷笑冲查。
思维能力表现为对问题进行分析、综合,科学推理,并能准确地表述 数学思维能力表现为以数学知识为素材,通过归纳抽象、符号表示、运算求解、演绎证明和空间想象等诸方面对客观事物的空间形式和数量关系进行思考和判断。
运算能力表现为根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简洁的运算途径 运算包括对数字的计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等。
实践能力表现为综合应用所学基本概念、基本蚂歼理论等数学知识、数学思想和方法解决生产、生活和相关学科中的简单数学问题。
三、考试内容与要求
《高等数学》科目考试要求考生掌握必要的基本概念、基础理论、较熟练的运算能力,在识记、理解和应用不同层次上达到普通高校(工科专业)专科生高等数学的基升巧本要求,为进一步学习奠定基础
对考试内容的要求由低到高分为了解、理解、掌握、灵活和综合运用四个层次,且高一级的层次要求包含低一级的层次要求
了解(A):对所列知识内容有初步的认识,会在有关问题中进行识别和直接应用
理解(B):对所列知识内容有理性的认识,能够解释、举例或变形、推断,并利用所列知识解决简单问题
掌握(C):对所列知识内容有较深刻的理性认识,形成技能,并能利用所列知识解决有关问题
灵活和综合运用(D):系统地把握知识的内在联系,并能运用相关知识分析、解决较复杂的或综合性的问题
专升本数学考试范围是:函数、极限与连续;导数与微分;中值定理与导数应用;原函数与不定积分概念、不定积分换元法、不定积分分部积分法;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
主要测查考生理解、把握事物间量化关系和解决数量关系问题的技能,主要涉及数字和数据关系的分析、推理、判断、运算等。数量关系有两种题型。第一种题型:数字推理。每道题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从四个供选择的答案中选出最合适、最合理的一个来填补空缺项,使之符合原数列的排列规律。数字推理必备知识:熟悉等差数列、等比数列、求和数列、乘积数列、幂数列、组合数祥州列、分数数列、质数数列、合数数列、根式数列、九宫图等。第二种题型:数学运算每道题给出一道算术式子,或者表达数量关系的一段文字,要求考生熟练运用加、减、乘、除等基本运算法则,利用基本的数学知识,准确、迅速地计算出结果。数学运算必备知识:四则运算、基本题型对应技巧、基本运算、常用的速算方法、路程问题、工程问题、鸡兔同笼、植树问题、方阵问题、浓度问题、比例问题、牛吃草问题、排列组合、概率问题、利润问题、集合问题、几何问题、分段问题等。第三部分:判断推理主要测查考生对各种事物关系的分析推理能力,涉及对图形、语词概念、事物关系和文字材料的理解、比较、组合、演绎和归纳等方面。本部分有四种题型。第一种题型:图形推理。每道题给出一套或两套图形,要求考生认真观察找出图形排列的规律,选出符合规律的一项。图形推理题必备要点:素、数、形、位四大类基本考点。具体为——元素变化、数量变化、笔画类、叠加类、求同类、求异类、区域变化、移动类、九宫图、戚宴薯空间还原、奇偶考查、旋转、平移等。第二种题型:定义判断。每道题先给出一个概念的定义,然后分别列出四种情况,要求考生严格依据定义选出一个最符合或最不符合该定义的答案。定义判断用“属”和“种差”的方法解答即可。第三种题型:类比推理。给出一对相关的词,然后要求考生在备选答案中找出一对与之在逻辑关系上最为贴近或相似的词。类比推理用“造句法”解决。第四种题型:逻辑判断。每道题给出一段陈述,这段陈述被假设是正确的,不容置疑的。要求考生根据这段陈述,选择一个最恰当答案,该答案应与所给的陈述相符合,应不需要任何附加说明即可以从陈述中直接推出。逻辑判断用正常的生活逻辑即可。逻辑判断常考规律:支持反对型(加强削弱型)、归纳型(推出型)、假设型(前提型)、解释型、评价型、逻辑应用型等第四部分:资料分析主要测查考生对各种形式的文字、图形、表格等资料的综合理解与分析加工的能力,这部分内容通常由数据性、统计性的图表数字及文字材料构成。针对一段资料一般有3~5个问题,考生需要根据资料所提供的信息进行分析、比较、计算,从四个备选答案中选出符合题意的答案。本部分的考查以文字、图形、表格三种资料形式出现。近几年考综合类的多,即:图高者、表、文字相结合考查。解答本部分题最关键的是:速度!所以要有很好技巧。
初中数学知识点总结
一、基本知识
一、数与代数A、数与式:
1、有理数
有理数:①整数→正整数/0/负整数
②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点旦岩扒距离相等。
④数轴上两个点表示的数,右边的总比模昌左边的大。正数大于0,负数小于0,正数大于枣樱负数。
其他信息:
学专业考研科目:
1、政治
2、英语
3、数学分析
4、高等数学
数学专业考研,各校研究方向、考试科目(专业课)不尽相同,考前需要查询报考院系的招生简章具体说明。
数学专业毕业生应获得以下几方面的知识和能力:
1、具有良好的、稳定的思想品德、社会公德、职业道德
能为人师表。
2、有扎实的数学基础,初步地掌握数学科学的基础理论和基本思想方法.
3、有良好的使用计算机的能力.
4、具有良好的教师职业素养和从事数学教学的基本能力,熟悉教育法规,掌握并初步运用教育学、心理学基本理论以及数学教学理论,有较强的语言表达能力和班级管理能力。
5、掌握强身健体的科学方法
养成良好的体育锻炼和卫生习惯
达到国家规定的关于大裤段渣学生身体素质、心理素质和审美能力的要求。
数学专业的主干课程:
主干课程:数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、概率论与燃做数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑胡悄学、模糊数学。师范类还要学习数学教育学等。
数学专业一般有以下几个方向:(01)基础数学;(02)计算数学 ;(03)应用数学 ;(04)运筹学与控制论 。具体的考试科目看报考哪个学校。初试一般英语政治统考,然后是专业课。数学分析和高等代数是一定会考的,有的学校还有考其他科目,比如:常微分,复变,实变等。具体情况要到报考的高校官网查询。
扩展资料:
(一)、中华人民共和国公民。
(二)、拥护中国***的领导,品德良好,遵纪守法。
(三)、身体健康状况符合国家和招生单位规定的体检要求。
(四)、考生必须符合下列学历等条件之一:
1、国家承认学历的应届本科毕业生(录取当年9月1日前须取得国家承认的本科毕业证书。含普通高等学校、成人高校、普通高等学校举办的成人高等学历教育应届本科毕业生,及自学考试和网络教育届时可毕业本科生)。
2、具有国家承认的大学本科毕业学历的人员。
3、获得国家承认的高职高专毕业学历后满2年(从毕业后到录取当年9月1日,下同)或2年以上,达到与大学本科毕业生同等学力,且符合招生单位根据本单位的培养目标对考生提出的具体业务要求的人员。
4、国家承认学历的本科结业生,按本科毕业生同等学力身份报考。
5、已获硕士、博士学位的人员。
6、在校研究生报考须在报名前征得所在培养单位同意。
资料来源:-考研
以上就是关于数学一考什么全部的内容,包括:数学一考什么、中考数学要考什么、大学高数考试一般考什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【数学一考什么】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态