两边对x求导得:
y'=e^y+xy'e^y
y'=e^y/(1-xe^y)
y''=dy'/dx
=[y'e^y(1-xe^y)-(-e^y-xy'e^y)e^y]/(1-xe^y)
=(2-x)e^(2y)/(2-xe^y)
即dy/dx=e^y/(2-y)
dy/dx=e^y/(2-y)
==>d(dy/dx)/dx=d(e^y/(2-y))
==>d(dy/dx)/dx=[e^y*dy*(2-y)-e^y*(-dy)]/(2-y)^2
因为dy/dx=e^y/(2-y),则
==>d(dy/dx)/dx=[e^2y+e^2y/(2-y)]/(2-y)^2
==>d(dy/dx)/dx=e^2y[1+1/(2-y)]/(2-y)^3
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【y=1+xe^y的二阶导数】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态