物理3-2知识点

 2024-11-20 10:51:01  阅读 515  评论 0

摘要:很多学生表示自从接触了物理的课程之后,就对此产生了浓厚的兴趣,所以在每次课堂期间都感觉课程非常有意思,而且每次考试也会取得良好的成绩,那么物理3-2知识点有哪些?下面小编和大家分享一下。物理3-2知识点核聚变的含义核聚变又称核融合、融合反应、聚变反应或热核反应。

很多学生表示自从接触了物理的课程之后,就对此产生了浓厚的兴趣,所以在每次课堂期间都感觉课程非常有意思,而且每次考试也会取得良好的成绩,那么物理3-2知识点有哪些?下面小编和大家分享一下。

物理3-2知识点

核聚变的含义

物理3-2知识点

核聚变又称核融合、融合反应、聚变反应或热核反应。核是指由质量小的原子,主要是指氘,在一定条件下(如超高温和高压),只有在极高的温度和压力下才能让核外电子摆脱原子核的束缚,让两个原子核能够互相吸引而碰撞到一起,发生原子核互相聚合作用,生成新的质量更重的原子核(如氦),中子虽然质量比较大,但是由于中子不带电,因此也能够在这个碰撞过程中逃离原子核的束缚而释放出来,大量电子和中子的释放所表现出来的就是巨大的能量释放。这是一种核反应的形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。核聚变是核裂变相反的核反应形式。科学家正在努力研究可控核聚变,核聚变可能成为未来的能量来源。核聚变燃料可来源于海水和一些轻核,所以核聚变燃料是无穷无尽的。人类已经可以实现不受控制的核聚变,如氢弹的爆炸。

如何建立一个习惯

了解了习惯形成的模型,接着我们可以得到建立一个习惯的基本思路:提供明显的提示(cue),加强回报(reward),就能建立惯例(routine)。

如果你想养成跑步的习惯,首先可以把跑鞋或者能提醒你要去跑步的东西放在显眼的地方,然后可以加强你的回报感,比如每跑完一次步记录下来自己跑的里程数(可视化),在家里用个黑板画出来,标注每天跑的公里数,完成任务画个星星奖励自己,没有完成用其他的记号标识惩罚,当积累到10颗或者20颗星星的时候就必须奖励自己,让自己有回报感。

养成看书的习惯。首先你要把书放在你能经常看见的地方,提醒自己(cue),然后要用一些方法使自己的回报感增强。比如,我每看完一本书,都会写书评,发布在不同的平台,都会在豆瓣中做记录,于是每次添加一本“看过”,都会无形中增强我的成就感。没事的时候,去书柜那边瞅瞅,自己看过的书,获得的收益,提醒自己的成就感。

冰雹

当地表的水被太阳曝晒汽化,然后上升到了空中,许许多多的水蒸气在一起,凝聚成云,此时相对湿度为100%,当遇到冷空气则液化,以空气中的尘埃为凝结,形成雨滴(热带雨)或冰晶(中纬度雨),越来越大,当气温降到一定程度时,空气的水汽过饱和,于是就下雨了,要是遇到冷空气而没有凝结核,水蒸气就凝华成冰或雪,就是下雪了,如果温度急剧下降,就会结成较大的冰团,也就是冰雹。

中国各地每年都会受到不同程度的雹灾。尤其是北方的山区及丘陵地区,青藏高原东部,云贵一带,地形复杂,天气多变,冰雹多,受害重,对农业危害很大。猛烈的冰雹打毁庄稼,损坏房屋,人被砸伤、牲畜被砸死的情况也常常发生;特大的冰雹甚至比柚子还大,会致人死亡、毁坏大片农田和树木、摧毁建筑物和车辆等。具有强大的杀伤力。雹灾是中国严重的自然灾害之一。

以上是小编和大家分享关于物理知识点的相关内容,其中包含有冰雹的形成和如何建立一个习惯等等多方面可见,对于物理的知识牵扯面是非常广的,所以在学习的过程中学生一定要努力,并且在考试中取得良好的成绩。

高二物理选修3-2交变电流知识点

学习了很多物理知识,这些物理知识比较琐碎,因此在课下要及时的进行巩固复习,下面是我给大家带来的高二物理选修3-2交变电流知识点,希望对你有帮助。

高二物理交变电流机知识点

一、交变电流的产生和描述

1.交变电流:大小与方向都随时间做周期性的变化的电流叫交变电流。

2.正弦交变电流是随时间按正弦或余弦规律变化的交变电流,其函数图像是正弦曲线。

二、变压器

变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。

三、三相交变电流

电工学中分别用黄、绿、红三种颜色的线为相线(火线),黑色线为中性线(零线)。三组线圈产生三相交变电流可对三组负载供电。

高二物理三相交变电流知识点

1、三相交变电流的产生:互成120°角的线圈在磁场中转动,三组线圈各自产生交变电流.

2、三相交变电流的特点:最大值和周期是相同的.

三组线圈到达最大值(或零值)的时间依次落后1/3周期.

3、电工学中分别用黄、绿、红三种颜色的线为相线(火线),黑色线为中性线(零线)。三组线圈产生三相交变电流可对三组负载供电,那么三组线圈和三个负载是怎样连接的呢?

4、端线、火线和中性线、零线.

从每个线圈始端引出的导线叫端线,也叫相线,在照明电路里俗称火线.从公共点引出的导线叫中性线,照明电路中,中性线是接地的叫做零线.

5、相电压和线电压.

端线和中性线之间的电压叫做相电压(U相)(即每一个线圈两端电压).

两条端线之间的电压叫做线电压(U线)(即2个线圈首端电压).

我国日常电路中,相电压是220V、线电压是380V.

6、三相AC的有关计算(其中w为线圈旋转角速度,Em为交压最大值)。

e1=Em*sin(wt)

e2=Em*sin(wt+2π/3)

高中物理课本选修3-2目录章节

高中物理教材涵盖的内容很广,知识点多,同学们复习的时候最好是模块式的复习,这样更有利于知识的巩固,下面是人教版物理选修3-2的目录,希望对你帮助。

第四章 电磁感应

1划时代的发现

2探究感应电流的产生条件

3楞次定律

4法拉第电磁感应定律

5电磁感应现象的两类情况

6互感和自感

7涡流、电磁阻尼和电磁驱动

第五章 交变电流

1交变电流

2描述交变电流的物理量

3电感和电容对交变电流的影响

4变压器

5电能的输送

第六章 传感器

1传感器及其工作原理

2传感器的应用

3实验:传感器的应用

附录一些元器件的原理和使用要点

高中物理必修一必修二选修3-1,3-2知识点框架

一、质点的运动(1)------直线运动

1)匀变速直线运动

1、速度Vt=Vo+at 2.位移s=Vot+at²/2=V平t= Vt/2t

3.有用推论Vt²-Vo²=2as

4.平均速度V平=s/t(定义式)

5.中间时刻速度Vt/2=V平=(Vt+Vo)/2

6.中间位置速度Vs/2=√[(Vo²+Vt²)/2]

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT²{Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s加速度(a):m/s2末速度(Vt):m/s时间(t)秒(s)位移(s):米(m)路程:米速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量 (2)物体速度大,加速度不一定大 (3)a=(Vt-Vo)/t只是量度式,不是决定式

(4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。

2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、力(常见的力、力的合成与分解)

(1)常见的力

1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:(1)劲度系数k由弹簧自身决定

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定

(3)fm略大于μFN,一般视为fm≈μFN

(4)其它相关内容:静摩擦力(大小、方向);

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C)

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

三、动力学(运动和力)

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):(m)角度(Φ):弧度(rad)频率(f)赫(Hz)周期(T):秒(s)转速(n)r/s;半径(r):米(m)线速度(V):m/s角速度(ω):rad/s向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变.

3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

五、功和能(功是能量转化的量度)

1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

注:

(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)O0≤α<90O 做正功;

90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);

(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

六、电场

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),

r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),

UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

常见电容器

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

3)常见电场的电场线分布要求熟记;

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,

导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:

1、F=106μF=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

(8)其它相关内容:静电屏蔽/示波管、示波器及其应用等势面。

七、恒定电流

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总

{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

10.欧姆表测电阻

(1)电路组成 (2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法: 电流表外接法:

电压表示数:U=UR+UA 电流表示数:I=IR+IV

Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真 Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真

选用电路条件Rx>>RA [或Rx>(RARV)1/2] 选用电路条件Rx<<RV [或Rx<(RARV)1/2]

12.滑动变阻器在电路中的限流接法与分压接法

限流接法

电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp>Rx 便于调节电压的选择条件Rp<Rx

注1)单位换算:

1、A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

八、磁场

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3.洛仑兹力f=qVB(注V⊥B)质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB

;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);

©解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:

(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握;

(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料

九、电磁感应

1.[感应电动势的大小计算公式]

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),

ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:

(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;

(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:

1、H=103mH=106μH。

(4)其它相关内容:自感/日光灯。

高中物理选修3-1,3-2复习要点

选修3-1:

知识点:

1、 电场力的性质:场强的概念,电场线的特点和应用

2 电场能的性质:电势的概念,特点,电势差,电场力做功的特点

3 带电粒子在复合场中的运动,这种题有定性分析和定量计算

高中物理知识点总结

物理(选修3-2)

第1章        电磁感应

11820年,丹麦物理学家奥斯特发现了电流的磁感应(电生磁)。

1831年,英国科学家法拉第实验成功磁生电,发现了(磁生电)。引领人类进电器时代。

2、电磁感应:因磁通量变化而产生电流的现象叫做电磁感应。所产生的电流叫感应电流。

3、 感应电动势:在电磁感应现象 产生的电动势叫感应电动势。产生感应电动势的那部分导体就相当于电源。(电源内部电流从低→高),

4、法拉第电磁感应定律:电路中感应电动势的大小与穿过这一电路的磁通量变化率城正比,这--。

 E=nΔφ/Δt  (n匝线圈可以看成由n个单匝线圈串联组成)     (用于磁通量变化而产生E)

 E=Δφ/Δt=ΔBS/Δt=BΔS/Δt=BLVΔt/Δt=BLVsinθ  (θ是v与B夹角)  (用于切割磁力线而产生E)

5、电磁感应定律的应用

涡流:将整块金属放在变化磁场中而产生感应电流,像漩涡一样电流叫涡流。(电磁炉、磁卡、动圈式话)

涡流负面问题:能使变压器、电动机、发电机的铁芯因涡流而损失电能.

第2章        楞次定律和自感现象

6、楞次定律:感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这就是楞次定律。(N对N,S对S)

外力要克服磁体和线圈之间的斥(引)力做功,使外界其他形式的能量转化为电能。

电磁阻尼的应用:磁电式表头上的应用,是指针很快稳定。

7、右手定则:是为了便于记忆而定的。原则上都要用楞次定律来判断。

8、自感现象:由导体自身的电流变化所产生的电磁感应现象叫做自感现象。

E=LΔI/Δt  (自感系数L与线圈形状、面积、长短、匝数),日光灯:启辉器(断通)镇流器:自感

9、自感应用:感应圈(低压直流获高压)、自感线圈(电磁波)、电焊机、家用电器

第3章 交变电流

10、有效值:交流电等效于直流电的效果(产生热量)数值就是有效值,U=0.707Um

11、交流发电机:原理闭合线圈在磁场中绕固定轴旋转而发电。一周感应电流方向改变2次。

E=n2BL1Vsinωt=n2BL1ωRsinωt=nBSωsinωt ,(最大值Em=nBSω)

T=2π/ω=1/f即ω=2π/T=2πf

12、电容、电感

电容:隔直流通交流;容抗Xc=1/2πfc  (阻低频、通高频);感抗XL=2πfL(阻交流,通直流)

(1)       低频扼流圈(阻交流,通直流)(2)高频扼流圈(阻高频,通低频)

13、变压器:U1/U2=n1/n2,对理想变压器,P入=P出,I1/I2=n2/n1(只适应于单组变压)

多组时n1I1=n2I2+n3I3+…。  P=P线+P用,功率损失率=电压损失率

14、高压直流输电:整流器(交流→直流),逆流器(直流→交流)

解题要点:

1、当B=5-0.2t时,ΔB/Δt=0.2,即可求出E=ΔBS/Δt,注t=0时B=5v

 (线圈不动,磁场不动,ΔB/Δt≠0,仍有感应电动势,或感应电流)

15、上学期物理公式

(1)电场力做功:W=Uq  (U指ab两点电压差),电功=UIt

(2)电容C=Q/U=εs/4πkd  电流I=Q/t, 即Q=IΔt=Et/R=ΔΦΔt/ΔtR=ΔΦ/R=ΔBS/R

(3)磁场,圆周运动半径r=mv/qB,T=2πm/qB

物理选修(3-4)

一、机械振动

1、机械振动:物体在平衡位置附近做往复运动,(一切发声物体都在震动)(总是指向平衡位置的力叫回复力)

2、简谐运动:把加速度大小与位移成正比,加速度的方向与位移方向相反特征的运动,称为简谐运动。

弹簧振子的运动:a=F/m=-kx/m (F=-kx,弹性势能Ek=1/2*kx2   (整个过程机械能守恒)

3、振动的特征:振幅(A);周期(T),频率(f),T=1/f(振幅反映了震动的强弱,周期反映了振动的快慢)

自由状态下,T与A无关。周期有本身性质决定的。跟是否振动无关。

4、 位移公式x=Asinωt (图)(ω= 2π/T),T=2π√m/k=2π√L/g

5、振动图:X—t的关系图

6、单摆运动(θ<5)T=2π√L/g, (惠更斯)计算加速度

7、阻尼振动:机械能不断减少,振幅也不断减少

8、受迫振动:频率(周期)=驱动力的频率(周期),与固有无关。当驱动频率接近固有频率是A最大。共振

9、共振:鱼洗共振,吉他、音箱,二胡等

二、机械波

1、  机械波:机械振动在介质中的传播。(水波,声波)(横波:质点振动方向垂直传播方向,从波:同向)

机械波(v=λ/T),λ由振源和介质共同决定的,故不同介质传播速率不同。

2、  电磁波(横波):传播时不需要介质的播叫电磁波(光波、无线电波)

3、  波形图(绳子):y—x,是某一时刻各个质点位置图,

例题一:如图所示,从某时刻t=0开始时,甲图为一列简谐横波经1/4周期的部分波形图,乙图是这列波中某质点的振动图( AC  )

A. 若波沿x轴正方向传播,图乙可能为质点A的振动图像

B.   若波沿x轴正方向传播,图乙可能为质点B的振动图像

C.   若波沿x轴负方向传播,图乙可能为质点C的振动图像

D.若波沿x轴负方向传播,图乙可能为质点D的振动图像

4、  波的反射:波遇障碍返回继续传播。(入射角=反射角)

5、  波的折射:sini/sinr=v1/v2

6、  波的干涉:只有频率和振动方向相同的波才能相互干涉。(水波、声波、光波、电磁波)

7、  波的衍射:障碍物接近λ,

8、  多普勒效应:是生源与观察者相对运动,接收到的f发生变化。(f大,声音高)

三、电磁波

1、电磁振荡:放电(电场能→磁场能,Q=0时I最大);充电(磁场能→电场能,I↓,I=0,Q最大)

T=2π√LC      a、均匀变化的磁(电)场→产生稳定电(磁)场。U=nsΔB/Δt,E=U/d

b、周期变化的磁(电)场→周期变化电(磁)场

2、麦克斯韦预言:变化的磁(电)场周围会产生电(磁)场。赫兹实验。

3、电磁波发射(开放电容);电磁波传播(地波、天波、空间波)

4电磁波谱:无线电波→红外线→可见光→紫外线→X线→γ线(λ↓)

红→橙→黄→绿→蓝→青→紫(λ依次减小) (红外线热效应,紫外线杀菌)

四、几何光学

1、sini/sinr=v1/v2=λ1/λ2=n21=n2/n1(荷兰斯涅耳定律)(任何介质的折射率n>1)

2、红光的v最大,n最小;紫光v最小,n最大。(光色不同n不同;介质不同n也不同)

3、全反射:sinC=1/n(从光密→光疏)(C为刚反射时的临界角)

4、光导纤维:丁达尔实验。原理:全反射。

5光的干涉:条件(频率、振动方向、相位差相同)Δy=l/d*λ  (双缝试验)(测定波长)

P点到s1s2的距离=nλ(n为整数)为明条纹,=(2n+1)(1/2λ)为暗条纹。(半波长奇数倍)

肥皂泡、油膜、测试玻璃平整度,镜头上增透膜都是干涉现象。

6、光的衍射:障碍物或孔的尺寸接近λ时,就能发生衍射。(泊松亮斑)显微镜(λ↓排衍射)光栅

7、偏振现象:横波只沿着某一特定的方向振动,就叫偏振。(光波属于电磁波)

(立体电影,偏振镜;拍摄时物体的反光是偏振光,检查应力的分布,用于地震预测)

五、激光:(特点:频率、相位、偏振方向、传播方向一致。单色性好、方向性好、亮度高)

“全息照相”——英国物理学家伽伯

六、相对论天体

1、经典力学:①相对性原理:力学规律在任何惯性系中都是相同的。

②绝对观:时间空间不随参考系变。

x=x′+vt   t=t′ 迈克尔孙的“以太”——“零结果”

2、狭义相对论

a狭义相对论的基本原理:

①狭义相对原理:物理规律(力学、电磁学光学)对于所有惯性系都具有相同的形式。

②光速不变原理:在任何惯性系中,光在真空中的速度恒为c,与光源的运动和观察者的运动无关。

b、狭义相对论的时空:Δt=Δt′/√(1-v^2/c^2)即相对静止的参考系t与l最短(固有时(长))。

c、相对论的速度叠加:u=(u′+v)/(1+vu′/c^2),说明:低速世界(经典力学),高速世界(相对论)

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【物理3-2知识点】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/246592.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.2419秒, 内存占用2.04 MB, 访问数据库23次

陕ICP备14005772号-15