初三数学二次函数知识点

 2024-11-19 23:42:01  阅读 192  评论 0

摘要:二次函数作为初三数学很重要的知识,一直让很多同学觉得头疼,怎么学也学不好,成绩一直不理想。其实只要我们掌握了二次函数的知识点,二次函数学习起来也不是很困难的。下面就让小编带大家了解一下初三数学二次函数知识点都有哪些,希望对大家有所帮助。初三数学二次函数知识

二次函数作为初三数学很重要的知识,一直让很多同学觉得头疼,怎么学也学不好,成绩一直不理想。其实只要我们掌握了二次函数的知识点,二次函数学习起来也不是很困难的。下面就让小编带大家了解一下初三数学二次函数知识点都有哪些,希望对大家有所帮助。

初三数学二次函数知识点

二次函数的概念

初三数学二次函数知识点

1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数。

2.二次函数的结构特征:

⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2。

⑵是常数,是二次项系数,是一次项系数,是常数项。

初三数学二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。

交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]。

注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax₁,x₂=(-b±√b^2-4ac)/2a。

二次函数的性质

1.性质:

(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

2.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点;

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

初三数学二次函数图像

对于一般式:

①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。

④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

对于顶点式:

①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。

④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况

以上内容就是由小编为大家整理分享的初三数学二次函数知识点,供大家参考。希望大家通过自己的努力学习来掌握运用好这些二次函数的知识点,让学习二次函数不再困难,并且提高自己的数学学习成绩。

初三数学二次函数知识点归纳

二次函数作为初三数学重难考点之一,一直被很多同学头疼。下面我就整理了初三数学二次函数相关知识点,供大家参考。

二次函数的概念

1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数。

2.二次函数的结构特征:

⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2。

⑵是常数,是二次项系数,是一次项系数,是常数项。

初三数学二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)。

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]。

交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]。

注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax₁,x₂=(-b±√b^2-4ac)/2a。

二次函数的性质

1.性质:

(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

2.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点;

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

初三数学二次函数图像

对于一般式:

①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称。

②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称。

③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称。

④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)

对于顶点式:

①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。

②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。

③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。

④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)

初三数学二次函数知识点总结

同学们都知道初中数学中函数占据一个了很重要的比值,很多题目解题都需要运用到二次函数。下面我为大家整理了初三数学二次函数知识点总结,希望对大家有所帮助。

二次函数的定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大),则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二次函数的三种表达式

一般式:y=ax²+bx+c(a,b,c为常数,a≠0);

顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)];

交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]。

注:在3种形式的互相转化中,有如下关系:

h=-b/2a;

k=(4ac-b²)/4a;

x₁,x₂=(-b±√b²-4ac)/2a。

抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b²)/4a)。

当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)。

6.抛物线与x轴交点个数:

Δ=b²-4ac>0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个交点。

Δ=b²-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x=-b±√b²-4ac的值的相反数,乘上虚数i,整个式子除以2a)。

用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0)。

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0)。

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0)。

抛物线y=ax^2+bx+c的图象

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x1-x2|。

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。

初三数学二次函数最全知识点整理

初中数学二次函数是比较难的一部分,下面我为大家整理 二次函数知识点 ,仅供参考。

初中数学二次函数知识点总结

二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax^2+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax^2+bx+c=0

此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大当x ≥ -b/2a时,y随x的增大而减小.

如何提高初中数学成绩

如果平时遇到一道题你就放弃,请问考试中孩子会懂得坚持吗?孩子会理解坚持的意义吗?那么信心也是一个道理,平时遇到问题都有信心解决,考试中遇到难题第一想法是干劲十足,相信自己有办法解决。

再者,平时的难题,一个思路不通孩子会换一个思路想问题,而不爱专研的孩子就是一根筋走到底,他的心里只有一种解决方法,再无其他。何谈灵活运用呢。如果一道题你有五种方法,彼此融会贯通,请问你是否有信心做对类似的题目呢?

书读百遍,其义自现。我父亲常劝导我一句话,“先把课本读厚,再把课本读薄”。其余时间几乎没有在我学习上费过心思,全拼自己的自学自悟。学习也一样,见得题目多了,理解的技巧熟练了,可以避免计算误区和一些弯路。所以必要的计算练习是不可或缺的。有指导性和针对性的训练也是不可或缺的。

初中二次函数知识点总结

作为九年级数学重难考点之一,二次函数一直被很多同学头疼。下面我整理了初中二次函数知识点总结,希望能帮到你!

一、定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

二、二次函数的三种表达式

一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)。

顶点式:y=a(x-h)^2;+k[抛物线的顶点P(h,k)]。

交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]。

注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2a。

三、二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax²+bx+c。

当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²+bx+c=0。

此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)²+k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同。

当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到。

当h<0时,则向左平行移动|h|个单位得到。

当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²+k的图象。

当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象。

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象。

因此,研究抛物线y=ax²+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax²+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b²]/4a).

3.抛物线y=ax²+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax²+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax²+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|。

当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax²+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b²)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现。

四、抛物线的性质

1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)。

6.抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)。

初三数学二次函数常见知识点整理

想要学好数学知识点是很重要的,下面我就大家整理一下初三数学二次函数常见知识点整理,仅供参考。

二次函数定义

定义:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,),称y为x的二次函数。

二次函数的三种表达式

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)^2+k(抛物线的顶点P(h,k))

二次函数的图像与性质

1 二次函数 的图像是一条抛物线。

2抛物线是轴对称图形。对称轴为直线x=-b/2a。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。

3二次项系数a决定抛物线的开口方向。

当a>0时,抛物线向上开口

当a<0时,抛物线向下开口。

4一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左

当a与b异号时(即ab<0),对称轴在y轴右。

5抛物线与x轴交点个数

Δ=b^2-4ac>0时,抛物线与x轴有2个交点

Δ=b^2-4ac=0时,抛物线与x轴有1个交点

Δ=b^2-4ac<0时,抛物线与x轴没有交点。

二次函数抛物线的性质

1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左

当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

以上就是我为大家整理的初三数学二次函数常见知识点整理。

版权声明:我们致力于保护作者版权,注重分享,被刊用文章【初三数学二次函数知识点】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;

原文链接:https://www.yxiso.com/news/239896.html

发表评论:

关于我们
院校搜的目标不仅是为用户提供数据和信息,更是成为每一位学子梦想实现的桥梁。我们相信,通过准确的信息与专业的指导,每一位学子都能找到属于自己的教育之路,迈向成功的未来。助力每一个梦想,实现更美好的未来!
联系方式
电话:
地址:广东省中山市
Email:beimuxi@protonmail.com

Copyright © 2022 院校搜 Inc. 保留所有权利。 Powered by BEIMUCMS 3.0.3

页面耗时0.0630秒, 内存占用2.01 MB, 访问数据库23次

陕ICP备14005772号-15