函数是中学阶段的核心知识,也是较难掌握的重点难点,其实函数也是整个现代数学的基石,要是函数学不好,那么学习现代数学也只能是一纸空谈,该怎样学好函数呢?下面由小编为大家带来初二数学函数知识点的分享,一起来看看吧。
初二数学函数知识点
变量和常量
在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。
函数
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
自变量取值范围的确定方法
自变量的取值范围必须使解析式有意义。
当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。
自变量的取值范围必须使实际问题有意义。
函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);
第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
函数的表示方法
列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
正比例函数
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.
正比例函数图象和性质
一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
解析式:y=kx(k是常数,k≠0)
必过点:(0,0)、(1,k)
走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限
增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小
倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴
正比例函数解析式的确定——待定系数法
设出含有待定系数的函数解析式y=kx(k≠0)
把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程
将k的值代回解析式
以上是由小编为大家分享的初二数学函数知识点,希望能给大家带来帮助。函数是数学的一个重要部分,它是代数和几何的结合,它展示了两个变量之间的代数关系,同时又可以从图像直观的观察,随着学习的深入,会有指数函数、对数函数、三角函数以及复合函数等等,所以学好函数对数学的学习很重要。
1、函数概念:
在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数。
2、一次函数和正比例函数的概念:
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。
说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定。
(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。
(3)当b=0,k≠0时,y=b仍是一次函数。
(4)当b=0,k=0时,它不是一次函数。
3、一次函数的图象(三步画图象)
由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b。
由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0)。但也不必一定选取这两个特殊点。画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可。
初中数学知识大纲中,函数知识占了很大的知识体系比例,学好了函数,就等于中考中数学成功了一大半。以下是我分享给大家的初中函数知识点归纳,希望可以帮到你!
初中函数知识点归纳
一、函数
(1)定义:设在某变化过程中有两个变量x、y,对于x的每一个值,y都有唯一的值与之对应,那么就说x是自变量,y是因变量,此时,也称y是x的函数。
(2)本质:一一对应关系或多一对应关系。
有序实数对 平面直角坐标系上的点
(3)表示方法:解析法、列表法、图象法。
(4)自变量取值范围:
对于实际问题,自变量取值必须使实际问题有意义
对于纯数学问题,自变量取值必须保证函数关系式有意义:
①分式中,分母≠0
②二次根式中,被开方数≥0
③整式中,自变量取全体实数
④混合运算式中,自变量取各解集的公共部份。
二、正比例函数与反比例函数
两函数的异同点
二、一次函数(图象为直线)
(1)定义式:y=kx+b (k、b为常数,k≠0)自变量取全体实数。
#FormatTableID_6#
(2)性质:
①k>0,过第一、三象限,y随x的增大而增大
k<0,过第二、四象限,y随x的增大而减小。
②b=0,图象过(0,0)
b>0,图象与y轴的交点(0,b)在x轴上方
b<0,图象与y轴的交点(0,b)在x轴下方。
三、二次函数(图象为抛物线)
(1)自变量取全体实数
一般式:y=ax2+bx+c (a、b、c为常数,a≠0),其中(0,c)为抛物线与y轴的交点
顶点式:y=a(x—h)2+k (a、h、k为常数,a≠0),其中(h,k)为抛物线顶点
h=- ,k= 零点式:y=a(x—x1)(x—x2)(a、x1、x2为常数,a≠0) 其中(x1,0)、(x2,0)为抛物线与x轴的交点。x1、x2 = (b 2 -4ac ≥0 )
(2)性质:
①对称轴:x=- 或x=h
②顶点:(- , )或(h,k)
③最值:当x=- 时,y有最大(小)值,为 或当x=h时,y有最大(小)值,为k
初中数学学习攻略
1.读的方法。同学们往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:
一是粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点
二是细读。对重要的概念、性质、判定、公式、法则、思想方法等反复阅读、体会、思考,领会其实质及其因果关系,并在不理解的地方作上记号(以便求教)
三是研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。
读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。
2.听的方法。“听”是直接用感官去接受知识,而初中同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听课程时注意做到:
(1)听每节课的学习要求
(2)听知识的引入和形成过程
(3)听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点)
(4)听例题关键部分的提示及应用的数学思想方法
(5)做好课后小结。
3.思考的方法。“思”指同学的思维。数学是思维的体操,学习离不开思维,数学更离不开思维活动,善于思考则学得活,效率高不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:
(1)敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考
(2)善于思考。会抓住问题的关键、知识的重点进行思考
(3)反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。
4.问的方法。孔子曰:“敏而好学,不耻不问。”爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。因此,同学在平时学习中应掌握问问题的一些方法,主要有:
(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问
(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来
(3)类比提问法。据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题
(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。
此外,在提问时不仅要问其然,还要问其所以然。
5.记笔记的方法。很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:
(1)在“听”,“思”中有选择地记录
(2)记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点
(3)记解题思路、思想方法
(4)记课堂小结。明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。
正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践。所以暑期期间每天给自己一些时间学习数学是很有必要的。
初中数学学习方法
1课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
2让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
3课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
4单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
猜你喜欢:
1. 高考必备数学公式知识点知识归纳
2. 中考物理必考知识点归纳
3. 初二函数知识点
4. 初三数学函数知识点
5. 《集合与函数概念》知识点汇总
初二对于学生来说是很重要的一个阶段,而一次函数是初二数学比较重要的章节,我整理了一些重要的知识点。
基本概念
1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
定义
一次函数的定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。
函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
(1)k>0,b>0
(2)k>0,b<0
(3)k<0,b>0
(4)k<0,b<0
以上是我整理的一次函数的知识点,希望能帮到你。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【初二数学函数知识点】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态