有很多同学在初中学习过程中感到非常吃力,尤其是在学不等式的时候,其实不等式是一个很简单的学习内容,大家觉得困难是因为学习方法不对,那么初中数学不等式 初中生数学难点是什么?接下来小编就和大家分享一些关于这方面的内容,一起来看看吧。
初中数学不等式 初中生数学难点
不等式的基本概念
用不等号把两个数学式连接起来所成的式子,叫做不等式.成用的不等号有“>”等。
在含有未知数的不等式中,能使不等式成立的未知数的数值范围,叫做这个不等式的解的集合,简称解集.求不等式的解集的过程,叫做解不等式。
如果两个不等式的解集完全相同,那么我们把这两个不等式称为同解不等式。
不等式的同解性质
不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,所得的不筹式与原不等式同解。
不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,所得的不等式.与原不等式同解。
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,所得的不等式与原不等式同解。
不等式的解法
一元一次不等式
只含有一个未知数,并且未知数的次数是一次的不等式,叫做一元一次不等式。
解一元一次不等式的一般步w是: 去分母,去括号,移项;合并同类项,化为。>b(或。
一元一次不等式组
几个含有相同米知数的一元一次不等式所组成的不等式组叫做一元一次不等式组,能使不等式组里每个不等式都成立的朱知数的数值范围,叫做这个不等式组的解集。
解不等式组的一般步骤是:
先分别求出不等式组中各个不等式的解集。
找出这些解集的公共部分,就得到不等式组的解集。
一元二次不等式
含有一个未知数,并且.未知数的最高次数是二次的不等式。
简单的分式不等式
含有分式的不等式叫傲分式不等式.解简单的分式不等式可以按下面三个步骤进行:
将不等式右边的各项都移到不等式的左边,通分化简,使不等式变为左边是一个分式,右边是零的形式;
根据分式的值大于(或小于)零时,分子和分母必须同号(或异号),从而分子与分母的积必须大于(或小于)零,转化为一元二次不等式。
解这个一元二次不等式,所得到的解集就是原不等式的解集。
初中数学怎么学才能学好?
同学们平时的学习时间是在课上,但是大家要树立一个意识:课前课后也很重要。利用好这些时间,在配合适当的学习方法,学好数学其实并不难。
课前:课前预习很重要,一方面可以先了解上课知识,课上能跟上老师思路,另一方面标记出自己不会的知识点,课上可以根据自己的情况侧重去听。
课上:课上45分钟,大多数同学都很难保证整节课集中精神,这就要求我们课前一定要预习,找到自己不会的知识点,课上尽量理解吸收。还是希望大家课上尽量集中精神,跟随老师的进度了解重点与难点,有利于复习。
课后:课后的时间一般用来复习,大家可以把自己没有掌握的知识点复习一下,也可以对本节所学知识进行检测与巩固。如果课后复习还存在不理解的地方,大家一定要找老师和同学去问清楚。
估计同学们都被老师说过:想要学习好,首先要摆出一个学习的态度来。这句话没有错,对待作业,首先思想上要重视起来,养成一个良好的习惯。
不要在写作业的时候干其他的事或想其他事,一心不能二用。尽快地反作业做完了才能够去做别的事情。
以上就是小编为大家精心准备的关于初中数学不等式 初中生数学难点的具体内容,供大家参考,希望可以给大家带来帮助。在学习不等式的过程中,大家也要多做一些数学题来巩固关于不等式的知识点,还可以掌握一些解答不等式题型的技巧。
用不等号将两个整式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。例如2x+2y≥2xy,sinx≤1,ex>0
”““连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。
可利用不等式的三个性质
1、不等式两边同时加或减一个数或一个式子,不等式仍然成立。
2、不等式两边同时乘或除一个正数,不等式仍然成立。
3、不等式两边同时乘或除一个负数,不等号要发生改变。
基本性质
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
不等式是初中数学大题常考的一个知识点,下面我为你整理了初中数学不等式教案,希望对你有帮助。
数学不等式教案〖教学目标〗
在本学段,学生将经历从实际问题中建立不等关系,进而抽象出不等式的过程,体会不等式和方程一样,都是刻画现实世界中同类量之间关系的重要数学模型,同时进一步发展学生的符号感.
(一)知识目标
1.能够根据具体问题中的大小关系了解不等式的意义.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依题意准确迅速地列出相应的不等式.体会现实生活中存在着大量的不等关系,学习不等式的有关知识是生活和工作的需要.
(二)能力目 标
1.培养学生运用类比方法研究相关内容的能力.
2.训练学生运用所学知识解决实际问题的能力.
(三)情感目标
1.通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.
2.通过 不等式的学习,渗透具有不等量关系的数学美.
数学不等式教案〖教学重点〗
能依题意准确迅速地列出相应的不等式.
数学不等式教案〖教学难点〗
理解符号“≥”“ ≤”的含义,理解什么是不等式成立.
数学不等式教案〖教学过程〗
一、课前布置
1.浏览课本P2~21,了解本章结构。_K]
自学:阅读课本P2~P4,试着做一做本节练习,提出在自学中发现的问题(鼓励提问).
2.查找“不等号的由来”
备注: 不等号的由来|K]
①现实世界中存在着大量的不等 关系,如何用符号表示呢? 为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽脑汁.1631年,英国数学家哈里奥特首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号.与哈里奥特同时代的数学家们也创造了一些表示大 小关系的符号,但都因书写起来十分繁琐而被淘汰.
②后来,人们在表达不等关系时,常把等式作为不等式的特殊情况来处理.在许多情况下,要用到一个数(或量)大于或等于另 一个数(或量),此时就把“>”和“=”有机地结合起来得到符号“≥”,读做“大于或等于”,有时也称为“不小于”.同样,把符号“≤”读做“小于或等于”,有时也称为“不大于”.
那么如何理解符号“≥”“≤”的含义呢?用“≥”表示“>”或 “=”,即两者必居其一,不要求同时满足.例如 ≥0,其中只有“>”成立,“=”就不成立.同样“≤”也有类似的情况.
③因此有人把a>b,b
现代数学中又用符号“≮”表示“不小于”,用“≯”表示“不大于”.有了这些符号,在表示不等关系时,就非常得心应手了.
二、师生互动
和学生一起进行知识梳理
(一)由师生一起交流“不等号的由来”① ,引出学习目标——认识不等式
1.引起动机:
教师配合课本“观察与思考”“一起探究”等 内容提问:用数学式子要如何表示小卡车赶超大卡车?
2.学生进行讨论并回 答 。
3.教师举例说明:
数学符号“>、<、≥、≤、≠”称为不等号,而含有这些符号的式子就称为不等式。
4.结合自己的旧经验,让学生认识“≤”所代表的意思。
教师说明:
在小学时我们学过“小于”的符号,也就是说如果“a小于b”,我们可以记为“a
5.仿照上面说明由学生进行“≥”的介绍.
6.教师举例提问:
如果我们要比较两数的大小关系时,可能会有几种情形?
(当我们比较两数的大小关系时,下面三种情形只有一种会成立,即 ab)
7.老师提问:如果我们只知道“a不大于b”,那该如何用不等号来表 示呢?
(「a不大于b」表示「a小于b」且「a有可能等于b」,所以我们可以记录成「a≤b」 )
8.仿照此题,引导学生了解“a不小于b”及“a不等于b”所代表的意义.
教师归纳说明:不等式的意义
不等式表示现实世界中同类量的不等关系.在有理数大小的比较中,我们常用不等号连接两个或两个以上的有理数,如-3>-5.不等式含有不等 号,常见的不等号有五种,其读法及意义如下:
(1)“>”读作“大于”,表示其左边的量比右边的量大.
(2)“<”读作“小于”,表示其左边的量比右边的量小.
(3)“≥”读作“大于等于”,即“不小于”,表示其左边的量大于或等于右边.
(4)“≤”读作“小于等于”,即“不大于”,表示其左边的量小于或等于右边.
(5)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大,哪个小
(二)用不等式表示数量关系
关键是明确问题中常用的表示不等关系词语的意义,并注意隐含在具体的情境中的不等关系.
补充例1. 下面列出的不等式中,正确的是 ( )
(A)a不是负数,可表示成a>0m]
(B)x不大于3,可表示成x<3
(C)m与4的差是负数,可表示成m-4<0
(D)x与2的和是非负数,可表示成x+2>0
解析:用不等式表示下列数量关系,关键是能用代数式准确地表示出有关的数量,并掌握"不大于"、“不超过”、“是非负数”等词语的正确含义及表示符号.
因为 a不是负数,可表示成a≥0
x不大于3,应表示成x≤3xx§k.Com]
x与2的和是非负数应表示成x+2≥0,
所以 只有(C)正确. 故本题应选(C).
(三)不等式成立的意义
对于含有未知数的不等式来说,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立当未知数取某些值时,不等式的左、右两边 不符合不等号所表示的大小关系,我们说不等式不成立.强调用“≥”表示“>”或“=” ,即两者必居其一,不要求同时满足.例如 ≥0,其中只有“>”成立,“=”就不成立.
三、补充练习
作业:课本P4习题
5分钟练习
1.“x的2倍与3的和是非负数”列成不等式为( )
A.2x+3≥0 B.2x+3>0 C.2x+3≤0 D.2x+3<0
2.几个人分若干个苹果,若每人3个还余5个,若去掉1人,则每人4个还有剩余.设有x个人,可列不等式为_____________________.
〖分层作业〗
基础知识
1.判断下列各式哪些是等式、哪些是不等式、哪些既不是等式也不是不等式.
①x+y ②3x>7 ③5=2x+3 ④x2≥0 ⑤2x-3y=1 ⑥52
2.用适当符号表示下列关系.
(1)a的7 倍与15的和比b的3倍大
(2)a是非正数
3.在-1,- ,- ,0, ,1,3,7,100中哪些能使不等式x+1<2成立?
综合运用
4.通过测量一棵树的树围,(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位,某树栽种时的树围为5 cm,以后树围每年增加约3 cm.这棵树至少生长多少年其树围才能超过2.4 m?请你列出关系式.
5.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知 导火线的燃烧速度为0.02 m/s,人离开的速度为4 m/s,导火线的长x(m)应满足怎样的关系式?请你列出.
1、x不等于-4 是不等式吗?
是不等式,只要有大于号,大于等于号,小于号,小于等于号,不等号的,都是不等式。不管这个不等式是否有可能成立。
2、m与4的差是负数,可表示为 m-4小于0是对的。a的负数,应表示为a小于0
3、x小于0,x+1也可能小于0,也可能等于0。例如x=-2时,x+1=-1小于0;x+-1时,x+1=0
-x大于0是对的。
版权声明:我们致力于保护作者版权,注重分享,被刊用文章【初中数学不等式】因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!;
工作时间:8:00-18:00
客服电话
电子邮件
beimuxi@protonmail.com
扫码二维码
获取最新动态